Skip to main content

Membrane Gas Separation in Petrochemistry: Problems of the Polymeric Membrane Selection

  • Chapter
Effective Industrial Membrane Processes: Benefits and Opportunities
  • 302 Accesses

Abstract

Although the solubility and diffusivity of each gas and vapour in each polymer are temperature and in some systems pressure (concentration) dependent, regular trends are noted when either many gases are studied in a single polymer or a single gas is studied in many polymers. Several empirical though scientifically based correlations of such data have been proposed which are at best semi-quantitative. In this paper improved correlations are described to correlate data on diffusivities D and solubilities S of rare gases, multiatomic gasesand lower hydrocarbons in polymers. The use of these, demonstrated by modelling of the variation of the membrane permselectivity to hydrocarbon containing gas mixtures with variation of concentration of the most condensable component this is of importance for petrochemistry applications.

The procedures rely on determining an effective Lennard-Jones {6–12} potential force constant and molecular diameter for each gas which hold in all polymers above Tg. Slightly smaller diameters are needed for multiatomic gases below Tg. Each polymer is characterized by four temperature and in some systems concentration dependent parameters, two for diffusivity and two for solubility, which hold with all gases.

The procedure described may be used to predict D and S, and hence permeabilities, in cases where data do not already exist. The values and ratios of the predicted permeabilities are a valuable guide when seeking polymers for separating gas mixtures by membrane processing and also for modelling of the permselectivity profile under concentration-dependent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S.M. Pujii, M. Stannett, Y. Hopfenberg, H.P. Williams, J.L. (1977), J. Membrane Sci.,vol.2, p. 153.

    Article  CAS  Google Scholar 

  • Barrie, J.A. Munday, K. (1983), J.Membrane Science, vol.13,no.1, p. 175.

    Article  CAS  Google Scholar 

  • Berens, A.R. Hopfenberg H.B. (1982) J.Membrane Soienoe,vol. 10, p.283.

    Article  CAS  Google Scholar 

  • Brandrup, J. Brandrup, E.H. (Ed.) (1975), Polymer Handbook, 2nd Ed. Wiley-Interscience, New-York, III-229.

    Google Scholar 

  • Bungay,P.M. Lonsdale, H.K. de Pinho, M.N. (eds.), (1986), Synthetic Membranes: Scienoe, Engineering and Applications (NATO ASI Series G, vol.181), D.Reidel Publishing Company: Dordrecht/Boston/lancaster/Tokyo., p.733

    Google Scholar 

  • Crank, J. Park, G.S. (1968) Diffission in polymers, NY.: Aoad.Press, p.445.

    Google Scholar 

  • Crank, J., (1975), The Mathematics of Diffusion, 2nd Edition, Clarendon Press, Oxford.

    Google Scholar 

  • Dourgaryan, S.G., Yampolsky, Y.P. (1983), Petrochemistry, vol.XXIII no.5, pp. 579–95.

    Google Scholar 

  • Evseenko, A.L.Teplyakov, V.T.Dourgaryan, S.G. Nametkin, N.S. (1979) Vysokomolek.soed.,vol.21B, no.2, p.153.

    Google Scholar 

  • Fabiani, C. Pizzichini, M. Bimbi. L. Yisentin, L. (1986), Separation Sci.Techn.,vol. 21, p.1111.

    Article  CAS  Google Scholar 

  • Henis, J.M. Tripodi, M.K. (1980) Separation Sci.Techn.,vol. 15, no. 4, pp.1059–68.

    Article  CAS  Google Scholar 

  • Hirshfelder, J.O. Curtiss, Ch.P. Bird, R.B. (1954) Molecular Theory of Gases and Liquids, Wiley, New-York, p. 1100.

    Google Scholar 

  • Hwang, S.-T. Kammermeyer, K. (1975) Membranes in Separations, Wiley-Interscience: New-York,, Chapter 3.

    Google Scholar 

  • Ievlev, A.L. Teplyakov, Y.Y. Durgaryan, S.G. Nametkin, N.S. (1982) Dokl. of the USSR Academy of Sciences, vol.264, no.6, p.1421.

    CAS  Google Scholar 

  • Koros, W.J. Fleming, G.K. Jordan, S.M. Kim, T.H. Hoehn, H.H. (1988) Polymeric membrane maerials for solution-diffusion based permeation separations, Prog. Polym. Sci., vol. 13, p.339–401.

    Article  CAS  Google Scholar 

  • de Ligni, C.L. and van der Yeen, N.G. (1972) Chem.Emg.Sci., vol.27, p.391.

    Article  Google Scholar 

  • Lloyd, D.R., Ed. (1985) Materials Science of Synthetic Membranes, ASC Sump Ser 269 American Chemical Society, p.492.

    Google Scholar 

  • Lundstrom, J.E. and Bearman, R.J, (1974), J. Polymer Scir Polym. Phys., vol.12, p.97.

    Article  CAS  Google Scholar 

  • Meares, P. Id. (1976), Membrane Separation Processes, Elsevier: Amsterdam - Oxford - New-York, p.600.

    Google Scholar 

  • Michaels, A.S. Bixler, H.J.(1961) J.Polymer Sci., vol.50,p.393,413.

    Article  CAS  Google Scholar 

  • Nakagawa, T. (1986) Membranes in gas separation and enrichment, Proc 4th BOC-Priestley Conf Specl Publ 62, Royal Society of Chemistry, London, UK, p.351.

    Google Scholar 

  • Nikolaev, N.I. (1980), Diffusion in membranes. Moscow: Khimiya, p.232.

    Google Scholar 

  • Odani, H. Taira, K. Nemoto, N. Kuraba, M. Bull. Inst. Chem. Res, (Japan) (1975) vol.53, p.216.

    CAS  Google Scholar 

  • Palmai,G. Olah, K. (1984) J. Membrane Science, vol. 21,p. 161.

    Article  CAS  Google Scholar 

  • Peterlin, A. (1975) J.Macromolec.Sci.,vol. 11(B),no. 1,p.57.

    Article  Google Scholar 

  • Petropoulos, J.H. (1985) Journal of Polymer Science: Polymer Physios Edition, vol.23, p. 1309.

    Article  CAS  Google Scholar 

  • Reytlinger, S.A. (1974) Permeability of polymeric materials, Moscow: Khimiya, p.268.

    Google Scholar 

  • Reid, R.C. Prausnitz, J.M. Sherwood, T.K. (1974) The properties of Gases and Liquids McGrow-Hill, New-York, 3rd Edn.

    Google Scholar 

  • Shvyryaev, A.A. Beckman, I.N. (1961) Yestnik MGU, Chemistry, vol. 22, p. 517.

    Google Scholar 

  • Stuart, H.A. (1967) Molekulstruktur, Berlin: Springer, p.84.

    Google Scholar 

  • Teplyakov, Y.Y. Durgaryan, S.G. (1984), Vysokomolek. soed., vol. 26A, no.7, p.1498

    Google Scholar 

  • Teplyakov, Y.Y. Durgaryan, S.G. (1986), Vysokomolek. soed., vol.28A, no.3, p.504.

    Google Scholar 

  • Teplyakov, Y.Y.(1987), D.I.Mendeleev J. Yses.Khim.Ob., vol.32, no.6, pp.693.

    CAS  Google Scholar 

  • Teplyakov, Y.Y. Ievlev, A.L. and Durgaryan, S.G. (1985) Vysokomolek. soed., vol.27A, p.818.

    Google Scholar 

  • Van Krevelen, D.W.(1976) Properties of Polymers, Elsevier, Amsterdam.

    Google Scholar 

  • Yolkov, Y.Y. Nametkin, N.S. Novitsky, E.G. Durgaryan, S.G. (1979), Vysokomolek. soed., vol.21A, no.4, pp.920, 927.

    Google Scholar 

  • Whyte, T.E. Ed. (1983) Industrial Gas Separations: ASC Symp. Ser. American Chemical Society, Washington, D.C. p.467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd, England

About this chapter

Cite this chapter

Teplyakov, V. (1991). Membrane Gas Separation in Petrochemistry: Problems of the Polymeric Membrane Selection. In: Turner, M.K. (eds) Effective Industrial Membrane Processes: Benefits and Opportunities. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3682-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3682-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-723-9

  • Online ISBN: 978-94-011-3682-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics