Skip to main content

Ceramic Matrix Composites — High Performance Damage Tolerant Materials

  • Chapter
Designing with Structural Ceramics
  • 273 Accesses

Abstract

Ceramic matrix composites (CMCs) are non-brittle, tough and damage tolerant materials as compared with monolithic ceramics. The non-brittle dissipative behaviour of CMCs results from the achievement, during their processing, of a fibre-matrix bond sufficiently weak to allow, during loading, multi-cracking of the matrix to develop without breaking the fibre. This unique feature, together with the good high temperature environmental behaviour of these materials resulting from the nature of the matrix, either silicon carbide or oxide, accounts for their rapid development during the last two decades. Therefore, the applications of these materials, restricted in a first step to military use, are now entering civil programmes such as hypersonic vehicles or turbojet engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiderhorn, S.M., “Reliability, life prediction and proof testing of ceramics”, Ceramics for High Performance Applications, Ed. J.J. Burke et al., 1974, p. 633.

    Google Scholar 

  2. Marshall, D.B. and Ritter, J.E., “Reliability of advanced structural ceramics and ceramic matrix composites — A review”, Ceramic Bulletin, 1987, 66.

    Google Scholar 

  3. Pasto, A.E., “Current issues in silicon nitride structural ceramics”, MRS Bulletin, 1 Oct, 1987, p. 73.

    Google Scholar 

  4. Cotter, D. and Koenigsberg, W., “Microfocus Radiography of high performance silicon nitride ceramics”, Conference on Non Destructive Testing of High Performance Ceramics, Boston, 1987.

    Google Scholar 

  5. Faber, K.T. and Evans, A.G., “Crack deflection Processes”, Acta Met., 1983, 31, p. 565–584.

    Article  Google Scholar 

  6. Evans, A.G. and Heuer, A.H., “Review — Transformation toughening in ceramics: Martensitic transformation in crack tip stress fields”, J. Am. Ceram. Soc., 1980, 63, 241–48.

    Article  CAS  Google Scholar 

  7. Tsukuma, D., Kubota, Y. and Tsukide, T., “Thermal and Mechanical properties of Y2O3 stabilized tetragonal Zirconia Polycrystals”, Advances in Ceramics, 12, Science and Technology of Zirconia II. Ed. N. Claussen, M. Ruhle and A.H. Heuer, Am. Cer. Soc. Colombus, OH, 1984.

    Google Scholar 

  8. Becher, P.F. and Wei, G.C., “Toughening behaviour of SiC whisker reinforced alumina”, J. Am. Ceram. Soc., 1984, 67, C267–269.

    Article  CAS  Google Scholar 

  9. Shalek, P.D., Petrovic, J.J., Hurley, G.F. and Gac, F.D., “Hot pressed SiC whiskers/Si3N4 matrix composites”, Am. Ceram. Soc. Bull., 1986, 65, p. 351–56.

    CAS  Google Scholar 

  10. Kelly, A., “Strong Solids”, (Second edition), Clarendon Pres, Oxford, 1973.

    Google Scholar 

  11. Aveston, J., Cooper, G.A. and Kelly, A., “Single and multiple fracture, in properties of fibre composites”, Conference Proceedings NPL, p. 15, IPC, Science and Technology Press, Guildford, 1971.

    Google Scholar 

  12. Cooper, G.A. and Sillwood, J., J. Mat. Sci., 1972, 7, 325.

    Article  CAS  Google Scholar 

  13. Marshall, D.B., Cox, B.N. and Evans, A.G., Acta Met., 1985, 33, 11, p. 2013–2021.

    Article  Google Scholar 

  14. McCartney, L.N., Proc. Roy. Soc., 1987, A409, 329.

    Google Scholar 

  15. Peres, P., «Analyse théorique et expérimentale du rôle des paramètres de microstructure sur le compoortement des composites à matrice fragile», INSA Thesis, 6 September, 1988.

    Google Scholar 

  16. Anquez, L., Costa, P., Peres, P. and Stohr, J.F., “Déformation et rupture dans les composites céramique-céramique, Colloque de métallurgie du CEN, Saclay, June 1989.

    Google Scholar 

  17. Marshall, D.B., “An indentation method for measuring fibre friction stress in ceramic composites”, J. Amer. Ceram. Soc., 1984, 67, 12.

    Article  Google Scholar 

  18. Parlier, M., Ritti, M.H., Stohr, J.F. and Vignesoult, S., “Silicon fibre reinforced glass ceramic matrix composites: A high temperature material for high performance application”, ICAS 90, Stockholm, 9–14 September, 1990.

    Google Scholar 

  19. Naslain, R. and Langlais, F., “CVD processing of ceramic-ceramic composite materials”, Mater. Sci. Res., 1986, 20, 145–164.

    CAS  Google Scholar 

  20. Fitzer, E., Hegen, D. and Strohmeier, H., “Possibility of gas phase impregnation with silicon carbide”, Rev. int. hautes temp, refrac., 1980, 17, 23–32.

    CAS  Google Scholar 

  21. French Patent 82.01025, “Structure composites de type réfractaire et son procédé de fabrication”, 22 Janvier, 1982.

    Google Scholar 

  22. Stinton, D.P., Caputo, A.J. and Lowden, R.A., “Synthesis of fibre-reinforced SiC composites by chemical vapour infiltration”, Ceram. Bull., 1986, 165.

    Google Scholar 

  23. Jamet, J.F., Anquez, L., Parlier, M., Ritti, M.H., Peres, P. and Grateau, L., “Composite céramique: Relations entre microstructure et rupture”, l’Aéronautique et l’Astronautique, 1987, 123/124, p. 128–142.

    Google Scholar 

  24. French Patent 89.00774, “Polysilanes et leur procédé de préparation”, 23 January, 1989.

    Google Scholar 

  25. Larche, F., Elissalde, D., Parlier, M. and Noireaux, P., “Effect of the heat treatment temperature on the transformation of a SiC precursor”, To be published in the proceedings of “Internatioanl Fine Ceramics Workshop”, Nagoya, 1990.

    Google Scholar 

  26. French Patent 87.18215, “Polysiloxalanes et leur procédé de préparation, leur utilisation comme précurseurs de céramique et lesdites céramiques”, 28 December, 1987.

    Google Scholar 

  27. Colombier, C., “Studies of new polysilazanes precursor to SiC-N-O ceramics”, Proceedings of the 1st European Ceramic Society Conference, Maastricht, Vol. I, 18–23 June, 1989, p. 143–152.

    Google Scholar 

  28. Colomban, P., “Gel technology in Ceramics, Glass Ceramics and Ceramic-Ceramic Composites”, Ceramic International, Elsevier Science, 1989, 503–50.

    Google Scholar 

  29. Snow, G.S., “Fabrication of Transport Electronic PLZT by atmosphere Sintering”, J. Am. Ceram. Soc., 1973, 56, 91–6.

    Article  CAS  Google Scholar 

  30. Thompson, J. Jr., “Chemical Preparation of PLZT Powders from Aqueous Nitrate Solution”, Am. Ceram. Soc. Bull., 1973, 53, 421–5.

    Google Scholar 

  31. Phalippou, J., Woigner, T. and Praffas, M., Part I: Synthesis of monolithic silica aerogels, J. Mat. Sci., 1990, 25, 3111.

    Article  CAS  Google Scholar 

  32. Woigner, T., Phalippou, J. and Praffas, M., Part II: Aerogel-glass transformation, J. Mat. Sci., 1990, 25, 3118.

    Article  Google Scholar 

  33. Jamet, J.F., Abbe, D. and Guyot, M.H., “Interface and matrix optimization in sintered ceramic composites”, ICCMV, San Diego, 5 July, 1985.

    Google Scholar 

  34. Cavalier, J.C., Lacombe, A. and Rouges, J.M., “Ceramic matrix composites, new materials with very high performances”, ECCM3, A.R. Bunsell, P. Lamicq and A. Massian, eds., Elsevier Applied Science, p. 99–110, 1989.

    Google Scholar 

  35. Oberlin, H., To be published.

    Google Scholar 

  36. Jamet, J.F., 12th Tech., Rimini, October 1987.

    Google Scholar 

  37. Brennan, J.J. and Prewo, K.M., J. Mat. Sci., 1989, 17, 2371–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Parlier, M., Stohr, J.F. (1991). Ceramic Matrix Composites — High Performance Damage Tolerant Materials. In: Davidge, R.W., Van de Voorde, M.H. (eds) Designing with Structural Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3678-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3678-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-740-6

  • Online ISBN: 978-94-011-3678-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics