Skip to main content

Fracture Mechanics of Ceramics

  • Chapter
Designing with Structural Ceramics
  • 302 Accesses

Abstract

The failure of ceramic materials is caused by the extension of small flaws. Therefore, linear-elastic fracture mechanics can be applied to describe the failure behaviour. The main problem in the application of the simple fracture mechanics relation is the existence of a rising crack growth resistance curve, which is caused by crack bridging forces behind the advancing crack tip or by transformations in front of the crack tip. The increasing crack growth resistance leads to problems in the transformation of results from specimens with macrocracks to components with natural cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiederhorn, S.M., Johnson, H., Diness, A.M. and Heuer, A.H., Fracture of glass in vacuum, J. Amer. Ceram. Soc., 1974, 57, 336–341.

    Article  CAS  Google Scholar 

  2. Wiederhorn, S.M. and Bolz, L.H., Stress corrosion and static fatigue of glass, J. Amer. Ceram. Soc., 1970, 53, 543–548.

    Article  CAS  Google Scholar 

  3. Fuller, E.R. and Thomson, R.M., Lattice theories of fracture, in: Fracture Mechanics of Ceramics IV, Plenum Press, 1978, 507–548.

    Google Scholar 

  4. Lawn, B.R., An atomistic model of kinetic crack growth in brittle solids, J. Mater. Sci., 1975, 10, 469–480.

    Article  Google Scholar 

  5. Krausz, A.S. and Mshana, J., The steady state fracture kinetics of crack front spreading, Int. J. Fract., 1982, 19, 277–293.

    Article  Google Scholar 

  6. Fett, T. and Munz, D., Zur Deutung des unterkritischen Risswachstums in keramischen Werkstoffen, DFVLR-Forschungsbericht, FB 8307, Cologne, 1983.

    Google Scholar 

  7. Fett, T., A fracture mechanical theory of subcritical crack growth in ceramics, Accepted for publication in Int. J. Fract.

    Google Scholar 

  8. Evans, A.G. and Rana, A., High temperature failure mechanisms in ceramics, Acta Met., 1980, 28, 129–141.

    Article  CAS  Google Scholar 

  9. Porter, J.R., Blumenthal, W. and Evans, A.G., Creep fracture in ceramic polycrystals, Acta Met., 1981, 29, 1899–1906.

    Article  CAS  Google Scholar 

  10. Dalgleish, B.J., Johnson, S.M. and Evans, A.G., High temperature failure of polycrystalline alumina, J. Amer. Ceram. Soc., 1984, 67, 741–750.

    Article  CAS  Google Scholar 

  11. Page, R.A., Lankford, J., Chan, K.S., Hardmann-Rhyne, K. and Spooner, S., Creep cavitation in liquid phase sintered alumina, J. Amer. Ceram. Soc., 1987, 70, 137–145.

    Article  CAS  Google Scholar 

  12. Steinbrech, R., Knehans, R. and Schaarwächter, W., Increas of crack resistance during slow crack growth in Al2O3 bend specimens, J. Mat. Sci., 1983, 18, 265–270.

    Article  Google Scholar 

  13. Evans, A.G. and Faber, K.T., Crack growth resistance of microcracking brittle materials, J. Amer. Ceram. Soc., 1984, 67, 255–260.

    Article  Google Scholar 

  14. Mai, Y. and Lawn, B.R., Crack-interface grain bridging as a fracture resistance mechanism in ceramics: II, Theoretical fracture mechanics model, J. Amer. Ceram. Soc., 1987, 70, 289–294.

    Article  CAS  Google Scholar 

  15. Fett, T. and Munz, D., Influence of crack surface interactions on stress intensity factor in ceramics, J. Mat. Sci. Lett., 1990, 9, 1403–1406.

    Article  Google Scholar 

  16. Rose, L.F., Kinematical model of stres-induced transformation around cracks, J. Amer. Ceram. Soc., 1986, 69, 208–212.

    Article  Google Scholar 

  17. McMeeking, R.M. and Evans, A.G., Mechanics of transformation-toughening in brittle materials, J. Amer. Ceram. Soc., 1984, 65, 242–246.

    Article  Google Scholar 

  18. Marshall, D.B. and Swain, M.V., Crack resistance curves in magnesiapartially-stabilzied zirconia, J. Amer. Ceram. Soc., 1988, 71, 399–407.

    Article  CAS  Google Scholar 

  19. Steinbrech, R. and Schmenkel, O., Crack-resistance curves of surface cracks in alumina, Comm. Amer. Ceram. Soc., 1988, 71, C271–C273.

    CAS  Google Scholar 

  20. Warren, R. and Johannsson, B., Creation of stable cracks in hard metals using ‘bridge’ indentation, Powder Met., 1984, 27, 25–29.

    CAS  Google Scholar 

  21. Suresh, S., Ewart, L., Maden, M., Slaughter, W.S. and Nguyen, M., Fracture toughness measurements in ceramics: pre-cracking in cyclic compression, J. Mat. Sci., 1987, 22, 1271–1276.

    Article  CAS  Google Scholar 

  22. Barker, L.M., A simplified method for measuring plane strain fracture toughness, Eng. Fract. Mech., 1977, 9, 361–366.

    Google Scholar 

  23. Cook, R.F., Lawn, B.R. and Fairbanks, C.J., Microstructure-strength properties in ceramics: I, Effect of crack size on toughness, J. Amer. Ceram. Soc., 1985, 68, 604–615.

    Article  CAS  Google Scholar 

  24. Hoshide, T., Furuya, H., Nagase, Y. and Yamada, T., Fracture mechanics approach to evaluation of strength in sintered silicon nitride, Int. J. Fract., 1984, 26, 229–239.

    Article  Google Scholar 

  25. Usami, S., Takahashi, I. and Machida, T., Static fatigue limit of ceramic materials containing small flaws, Eng. Fract. Mech., 1986, 25, 483–495.

    Article  Google Scholar 

  26. Newman, J.C and Raju, I.S., An empirical stress intensity factor equation for the surface crack, Eng. Fract. Mech., 1981, 15, 185–192.

    Article  Google Scholar 

  27. Fett, T. and Mattheck, C., Stress intensity factors of embedded elliptical cracks for weight function application, Int. J. Fract., 1989, 40, R3–R11.

    Article  Google Scholar 

  28. Evans, A.G. and Tappin, G., Proc. Br. Ceram. Soc., 1972, 20, 275–297.

    Google Scholar 

  29. Baratta, F.I., Mode I stress intensity factors for various configurations involving single and multiple cracked spherical voids, Fracture Mechanics of Ceramics, Vol. 5, 1983, 543–567.

    Google Scholar 

  30. Munz, D., Rosenfelder, O., Goebbels, K. and Reiter, H., Assessment of flaws in ceramic materials on the basis of non-destructive evaluation, Fracture Mechanics of Ceramics, Vol. 7, 1986, 265–283.

    CAS  Google Scholar 

  31. Heinrich, J. and Munz, D., Strengths of reaction-bonded silicon nitride with artificial pores, Amer. Ceram. Soc. Bull., 1980, 59, 1221–1222.

    CAS  Google Scholar 

  32. Wiederhorn, S.M. and Bolz, L.H., Stress corrosion and static fatigue of glass, J. Amer. Ceram. Soc., 1970, 53, 543–548.

    Article  CAS  Google Scholar 

  33. Fett, T., Germerdonk, K., Grossmüller, A., Keller, K. and Munz, D., Subcritical crack growth and threshold in borosilicate glass, J. Mat. Sci., 1991, 26, 253–257.

    Article  CAS  Google Scholar 

  34. Kawakubo, T. and Komeya, K., Static and cyclic fatigue behaviour of a sintered silicon nitride at room temperature, J. Amer. Ceram. Soc., 1987, 70, 400–405.

    Article  CAS  Google Scholar 

  35. Keller, K., Ph.D. Thesis, University of Karlsruhe, FRG, 1989.

    Google Scholar 

  36. Fett, T. and Munz, D., Determination of V-KI curves by a modified evaluation of lifetime measurements in static bending tests, Comm. Amer. Ceram. Soc., 1985, 68, C213–C215.

    Google Scholar 

  37. Fett, T. and Munz, D., Subcritical crack extension in ceramics, MRS International Meeting on Adv. Mats., Vol. 5, 505–523, Materials Research Society, 1989.

    Google Scholar 

  38. Fuller, E.R., An evaluation of double-torsion testing, ASTM STP 678, 1979, 3–18.

    Google Scholar 

  39. Freiman, S.W., Murville, D.R. and Mast, P.W., Crack propagation studies in brittle materials, J. Mater. Sci., 1973, 8, 1527–1533.

    Article  CAS  Google Scholar 

  40. Fett, T. and Munz, D., Subcritical crack growth of macro-cracks in alumina with R-curve behaviour, submitted to J. Amer. Ceram. Soc.

    Google Scholar 

  41. Evans, A.G. and Fuller, E.R., Crack propagation in ceramic materials under cyclic loading conditions, Met. Trans., 1974, 5, 27–33.

    Google Scholar 

  42. Grathwohl, G., Ermüdung von Keramik unter Schwingbeanspruchung, Mat.-wiss. u. Werkstofftechn., 1988, 19, 113–124.

    Article  CAS  Google Scholar 

  43. Dauskardt, R.H., Yu, W. and Ritchie, R.O., Fatigue crack propagation in transformation-toughened zirconia ceramics, J. Amer. Ceram. Soc., 1987, 70, C248–257.

    Article  Google Scholar 

  44. Fett, T., Martin, G., Munz, D. and Thun, G., Determination of da/dn-ΔK curves for small cracks in alumina in alternating bending tests, to be published in J. Mat. Sci.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Munz, D. (1991). Fracture Mechanics of Ceramics. In: Davidge, R.W., Van de Voorde, M.H. (eds) Designing with Structural Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3678-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3678-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-740-6

  • Online ISBN: 978-94-011-3678-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics