Skip to main content

Theoretical Derivation of Interparticle Forces

  • Chapter
Book cover The Dynamics of Fine Powders

Part of the book series: Elsevier Handling and Processing of Solids Series ((HPSS))

Abstract

The so-called interparticle forces comprise capillary forces, electrostatic forces and Van der Waals forces.

The analysis in this chapter is a further elaboration and explanation of the paper by Cottaar and Rietema (1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Hamaker constant (J)

Cij :

Constant in Lennard-Jones potential for substances i and j (J m6)

d:

Particle diameter, or diameter of the spring wire (m)

D:

Equivalent diameter of contacting particles (m)

e:

Free space between windings of spring (—)

E:

Elasticity modulus of powder (N m -2)

Em :

Elasticity modulus of spring material (N m -2)

Epc :

Elasticity modulus of particle contact (N m -2)

Es :

Elasticity modulus of spiral spring (N m -2)

F:

Force between particles (N)

Fc :

Cohesion force (N)

G:

Gas adsorption function (—)

h:

Flattening of particles (m)

k:

Boltzmann constant (J K -x)

K:

=(l-v2)/Y(N -;1m2)

L:

Distance between particle centre and surface of the plane (m)

n:

Molecule density (m -3)

Na :

Density of adsorbed gas molecules (m -2)

N:

oa Maximum density of adsorbed gas molecules (m -2)

r:

Distance between molecules (m)

rij :

Molecule parameter (see eqn (4.5)) (m)

R:

Radius of particle, or radius of spiral spring (m)

s:

Parameter indicated in Fig. 4.4 (m)

T:

Temperature (K)

Um :

Total molecular potential of system (J)

Uc :

(y)Binding energy between two planes (J)

V:

Volume of particle (m3)

Vij:

Intermodular potential for substances i and;(J)

Y:

Young’s modulus of elasticity (N m -2)

z:

Smallest distance between the surfaces of the particle and the plane (m)

α:

Ratio of constants for molecular solid-solid interaction and gas adsorption (—)

δ:

Fraction of adsorbed gas density (—)

εc :

Dimensionless interaction parameter (—)

ζ:

Dimensionless distance (—)

ŋ:

Dimensionless flattening (—)

θC :

Dimensionless density of adsorbed gas molecules (—)

v:

Poisson’s ratio (—)

ρd :

Density of solid particles (kg m -3)

σc :

Cohesion constant (N m -2)

σn :

Normal stress (N m -2)

τ:

Ratio of adsorption energy to thermal energy (—)

Ø:

Dimensionless external force applied to the particle-plane system (—)

x:

Dimensionless interaction energy (—)

ψ:

Dimensionless elastic deformation energy (—)

ω:

= ζ-ŋ (—)

References

  • Boehme, G., Krupp, H., Rabenhorst, H. & Sandstede, G., (1962). Adhesion measurements involving small particles. Trans. Inst. Chem. Engrs, 40, 252.

    Google Scholar 

  • Bradley, R.S. (1932). On the cohesive forces between solid surfaces ar the surface energy of solids. Phil. Mag., 13, 853.

    CAS  Google Scholar 

  • Cottaar, E.J.E. & Rietema, K. (1986). A theoretical study of the influence of gas adsorption on interparticle forces in powders. J. Colloid Interface Sci., 109, 249.

    Article  CAS  Google Scholar 

  • Dahneke, B. (1972). The influence of flattening on the adhesion of particles. J. Colloid Interface Sci., 40, 1.

    Article  CAS  Google Scholar 

  • Derjaguin, B.V., Muller, V.M. & Toporov, Y.P. (1975). Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci., 53, 314.

    Article  CAS  Google Scholar 

  • Donsi, G. & Massimilla, L. (1973). Particle to particle forces in fluidization of fine powders. Proc. Int. Symp. Fluidization and its Applications, Toulouse, France, p. 41.

    Google Scholar 

  • Dubbels Taschenbuch (1953). Vol. 1, eleventh edition, p. 396.

    Google Scholar 

  • Hamaker, H.C. (1937). The London-Van der Waals attraction between spherical particles. Physica, 4, 1058.

    Article  CAS  Google Scholar 

  • Hertz, H. (1895). Gesammelte Werke, Leipzig, Germany.

    Google Scholar 

  • Johnson, K.L., Kendall, K. & Roberts, A.D. (1971). Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond., A324, 301.

    Google Scholar 

  • Krupp, H. (1967). Particle adhesion, theory and experiment. Advan. Colloid Interface Sci., 1, 111.

    Article  CAS  Google Scholar 

  • Lennard-Jones, J.E. (1937). The equation of state of gases and critical phenomena. Physica, 4, 941.

    Article  CAS  Google Scholar 

  • London, F. (1937). The general theory of molecular forces. Trans. Faraday Soc., 33, 8.

    Article  CAS  Google Scholar 

  • Massimilla, L. & Donsi, G. (1976). Cohesive forces in fluidization of fine particles. Powder Techn., 15, 253.

    Article  Google Scholar 

  • Molerus, O. (1975). Theory of yield of cohesive powders. Powder Techn., 12, 259,

    Article  Google Scholar 

  • Piepers, H.W., Cottaar, E.J.E., Verkooyen, A.H.A. & Rietema, K. (1984). Effects of pressure and type of gas on particle-particle interaction and the consequences for gas-solid fluidization behaviour. Powder Techn., 37, 55.

    Article  CAS  Google Scholar 

  • Pollock, H.M. (1978). Contact adhesion between solids in vacuum. II, Deformation and interfacial energy. J. Phys. D, Appl. Phys., 11, 39.

    Article  CAS  Google Scholar 

  • Rietema, K. & Piepers, H.W. (1990). The effect of interparticle forces on the stability of gas-fluidized beds. Part I, Experimental evidence. Chem. Engr. Sci., 45, 1627.

    Article  CAS  Google Scholar 

  • Rumpf, H. (1958). Grundlagen und Methoden des Granulierens. Chemie-Ing. Techn., 30, 144.

    Article  CAS  Google Scholar 

  • Tabor, D. (1977). Surface forces and surface interactions. J. Colloid Interface Sci., 58, 2.

    Article  CAS  Google Scholar 

  • Visser, J. (1972). On Hamaker constants. A comparison between Hamaker constants and Lifshitz-Van der Waals constants. Advan. Colloid Interface Sci., 3, 331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Rietema, K. (1991). Theoretical Derivation of Interparticle Forces. In: The Dynamics of Fine Powders. Elsevier Handling and Processing of Solids Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3672-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3672-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-594-5

  • Online ISBN: 978-94-011-3672-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics