Skip to main content

Fuzzy Optimization of Laminated Cylindrical Pressure Vessels

  • Chapter
Composite Structures

Abstract

Optimum fiber orientations of symmetrically laminated cylindrical pressure vessels are determined subject to strength constraints which contain fuzzy input data. The fuzzy information is taken into account by defining fuzzy feasible regions for the constraints with the degree of membership of any design point depending on the degree of satisfaction of the constraints. The maximum stress theory of failure is adopted in determining the burst pressure. Membership functions are defined for the objective function (internal pressure) and the constraints, and the degree of membership is maximized with respect to ply angles. Numerical results are given for vessels made of a graphite/epoxy material. The behavior of the optimum ply angles and the maximum pressure is investigated with respect to the level of fuzziness and axial forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L. A., Fuzzy sets. Information and Control, 8 (1965) 338–53.

    Google Scholar 

  2. Bellman, R. E. and Zadeh, L. A., Decision making in a fuzzy environment. Management Science, 17 (1970) B141–64.

    Article  Google Scholar 

  3. Blockley, D. I., The Nature of Structural Design and Safety. Ellis Horwood, Chichester, 1980.

    Google Scholar 

  4. Brown, C. B. and YAO, J. T. R, Fuzzy sets and structural engineering. ASCE Journal of Structural Engineering, 109 (1983) 1211–25.

    Article  Google Scholar 

  5. Guang-Yuan, W. and Wen-Quan, W., Fuzzy optimum design of structures. Engineering Optimization, 8 (1985) 291–300.

    Article  Google Scholar 

  6. Rao, S. S., Multiobjective optimization of fuzzy structural systems. International Journal of Numerical Methods in Engineering, 24 (1987) 1157–71.

    Article  Google Scholar 

  7. Rao, S. S., Optimum design of structures in a fuzzy environment. AIAA Journal, 25 (1987) 1633–6.

    Article  Google Scholar 

  8. Xu, C., Fuzzy optimization of structures by the two-phase method. Computers and Structures, 31 (1989) 575–80.

    Article  Google Scholar 

  9. Dhingra, A. K., Rao, S. S. and Miura, H., Multiobjective decision making in a fuzzy environment with applications to helicopter design. AIAA Journal, 28 (1990) 703–10.

    Article  Google Scholar 

  10. Mohandas, S. U., Phelp, T. A. and Ragsdell, K. M., Structural optimization using a fuzzy goal programming approach. Computers and Structures, 37 (1990) 1–8.

    Article  Google Scholar 

  11. Morton, S. K. and Webber, J. P. H., Uncertainty reasoning applied to the assessment of composite materials for structural design. Engineering Optimization, 16 (1990) 43–77.

    Article  Google Scholar 

  12. . Reuter, R. C. Jr, Analysis of shells under internal pressure. Journal of Composite Materials, 28 (1972) 94–113.

    Article  Google Scholar 

  13. Chaudhuri, R. A., Balaraman, K. and Kunukkasseril, V. X., Arbitrarily laminated, anisotropic cylindrical shell under internal pressure. AIAA Journal, 24 (1986) 1851–8.

    Article  Google Scholar 

  14. Chao, C. C., Sun, C. T. and Koh, S. L., Strength optimization for cylindrical shells of laminated composites. Journal of Composite Materials, 9 (1975) 55–66.

    Article  Google Scholar 

  15. Tauchert, T. R., Optimum design of a reinforced cylindrical pressure vessel. Journal of Composite Materials, 15 (1981) 390–402.

    Article  Google Scholar 

  16. Fukunaga, H. and Uemura, M., Optimum design of helically wound composite pressure vessels. Composite Structures, 1 (1983) 31–49.

    Article  Google Scholar 

  17. Fukunaga, H. and Chau, T-W., Simplified design techniques for laminated cylindrical pressure vessels under stiffness and strength constraints. Journal of Composite Materials, 22 (1988) 1156–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers LTD.

About this chapter

Cite this chapter

Adali, S. (1991). Fuzzy Optimization of Laminated Cylindrical Pressure Vessels. In: Marshall, I.H. (eds) Composite Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3662-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3662-4_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-647-8

  • Online ISBN: 978-94-011-3662-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics