Skip to main content

The NASA Solar Probe Mission: In Situ Determination of Interplanetary Out-of-the Ecliptic and Near-Solar Dust Environments

  • Conference paper
Origin and Evolution of Interplanetary Dust

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 173))

  • 261 Accesses

Abstract

The NASA Solar Probe mission will be one of the most exciting dust missions ever flown and will lead to a revolutionary advance in our understanding of dust within our solar system. Solar Probe will map the dust environment from the orbit of Jupiter (5 AU), to within 4 solar radii of the sun’s center. The region between 0.3 AU and 4 Rs has never been visited before, so the 10 days that the spacecraft spends during each (of the two) orbit is purely exploratory in nature. Solar Probe will also reach heliographic latitudes as high as ∼ 15° to 28° above (below) the ecliptic on its trajectory inbound (outbound) to (from) the sun. This, in addition to the ESA/NASA Ulysses mission, will help determine the out-of-the-ecliptic dust environment. A post-perihelion burn will reduce the satellite orbital period to 2.5 years about the sun. A possible extended mission would allow data reception for 2 more revolutions, mapping out a complete solar cycle. Because the near-solar dust environment is not well understood (or is controversial at best), and it is very important to have better knowledge of the dust environment to protect Solar Probe from high velocity dust hits, we urgently request the scientific community to obtain further measurements of the nearsolar dust properties. One prime opportunity is the July 1991 solar eclipse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ‘An Impl. Plan for Priorities in Sol.-Syst. Space Phys.’ (1985), Com. Sol. and Space Phys. of the Space Sci. Bd., Nat. Acad. Press, Wash.. D.C.

    Google Scholar 

  2. Sol. Probe Miss. Sys. Design Concepts 1989’ (1989), ed. J. E. Randolph, JPL Internal Document D-6798.

    Google Scholar 

  3. ’solar Probe Scientific Report’ (1989), JPL Internal Document D-6797.

    Google Scholar 

  4. Grün, E., et al. (1991), In-situ space expl. of dust in sol. syst. and init. results from Galileo dust det., in Orig. and Ev. Interpl. Dust, Kluwer, Dordrecht.

    Google Scholar 

  5. Lamy, Ph.L. (i974), ‘Interact. of interpl. dust grains with sol. rad. field’, Astron. and Astrophy., 35, 197–207.

    ADS  Google Scholar 

  6. MacQueen, R. M. (1968) ‘Infrared obs. of outer sol. cor.’, Astrophys. J., 154, 1059–1076.

    Article  ADS  Google Scholar 

  7. Peterson, A. W. (1969) ‘Exp. det. therm. rad. interpl. dust’, Astrophys. J., 148, L37–L39.

    Article  ADS  Google Scholar 

  8. Peterson, A. W. (1971), Bull. Amer. Astron. Soc., 3, 500.

    ADS  Google Scholar 

  9. Mizutani, K. et al. (1984). ‘Near-infrared obs. circumsol. dust emis. during 1983 sol. eclipse’, Nature, 312, 134–136.

    Article  ADS  Google Scholar 

  10. Mukai, T. (1985) ‘On the sol. dust rings’, in Props. Interacts. Interpl. Dust, R. H. Giese and P.Lamy,(eds.), D. Reidel, 59-62.

    Google Scholar 

  11. Mukai, T., (1974), ‘On circum. grain mat.’, Publ. Astron. Soc. Japan. 26, 445–458.

    ADS  Google Scholar 

  12. Mann, I. and Kneissel, B. (1991), ‘Interpl. dust close to the sun’, in Orig. Ev. Interpl. Dust, A. C. Levasseur-Regpurd (ed.), Kluwer, Dordrecht.

    Google Scholar 

  13. Grün, E., et al. (1985), ‘Coll. bal. of meteoric compl.’, Icarus, 62, 244–272.

    Article  ADS  Google Scholar 

  14. Leinert, C., Richter, I., Pitz, E.. and Planck, B. (1981) ‘The zod. light from 1.0 to 0.3 AU as obs. by Helios space probes’, Astron. Astrophys., 103, 177–188.

    ADS  Google Scholar 

  15. Good, J. C., et al. (1986), ‘IRAS obs. of zod. backgrd.’ Adv. Space Res., 6, 83–86.

    Article  ADS  Google Scholar 

  16. Kneissel, B. and Giese, R. H. (1986), ‘The impact of IRAS results on 3-D models glob. distr. interpl.. dust’, 1, 6, 79–82.

    Google Scholar 

  17. Levasseur-Regourd, A. C. and Dumont, R. (1990) ‘IRAS obs. zod. backgrd.’ Adv. Space Res., 6, 83–86.

    Google Scholar 

  18. Levasseur-Regourd, A. C., et al. (1990), ‘Dust op. prop.: comp. betw. comet. interpl. grains’, Adv. Space Res.’.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tsurutani, B.T., Randolph, J.E. (1991). The NASA Solar Probe Mission: In Situ Determination of Interplanetary Out-of-the Ecliptic and Near-Solar Dust Environments. In: Levasseur-Regourd, A.C., Hasegawa, H. (eds) Origin and Evolution of Interplanetary Dust. Astrophysics and Space Science Library, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3640-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3640-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5616-8

  • Online ISBN: 978-94-011-3640-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics