Skip to main content

Size dependence of concrete fracture energy determined by RILEM work-of-fracture method

  • Chapter
Current Trends in Concrete Fracture Research

Abstract

The paper analyzes the size dependence of the fracture energy of concrete obtained according to the existing RILEM recommendation proposed by Hillerborg and based on the work-of-fracture method of Nakayama, Tattersal and Tappin, in which the energy dissipated at the fracture front is evaluated from the measured load-displacement curve. The analysis is based on the size effect law proposed by Bažant, which has been shown to be applicable to the size ranges up to about 1:20 and apply in the same form for all specimen geometries. The analysis utilizes the previously developed method for calculating the R-curve from the size effect, and the load-deflection curve from the R-curve. The R-curve is dependent on the geometry of the specimen. The results show that the fracture energy according to the existing RILEM recommendation is not size-independent, as desired, but depends strongly on the specimen size. This dependence is even stronger than that of the R-curve. When the specimen size is extrapolated to infinity, the fracture energy according to the RILEM recommendation coincides with the fracture energy obtained by the size effect method. It is also found that, in fracture specimens of usual sizes, the pre-peak contribution of the work of the load to the fracture energy is relatively small. Finally, as a by-product, the analysis also verifies the fact that, in three-point bend fracture specimens, the fracture energy according to the RILEM definition is dependent on the notch depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z.P. Bažant, inFracture of Concrete and Rock Proceedings of SEM-RILEM International ConferenceHouston, June, 1987, S.P. Shah and S.E. Swartz (eds.), Springer-Verlag, NY (1989) 229–241; also Preprints, published by Society for Experimental Mechanics (1987) 390–402.

    Google Scholar 

  2. Z.P. Bažant and P.A. PfeifferACI Material Journal84 (6) (1987) 468–480.

    Google Scholar 

  3. Z.P. BažantJournal of Engineering Mechanics ASCE110 (4) (1984) 518–35.

    Google Scholar 

  4. Z.P. Bažant, inProceedings of U.S. Japan SeminarTokyo, 1985Finite Element Analysis of Reinforced Concrete StructuresC. Meyer and H. Okamura (eds.), ASCE, New York (1986) 121–150.

    Google Scholar 

  5. RILEMMaterials and Structures18 (106) (1985) 285–290.

    Google Scholar 

  6. A. HillerborgMaterials and Structures18 (106) (1985) 291–96.

    Google Scholar 

  7. J. NakayamaJournal of American Ceramics Society48 (11) (1965) 583–87.

    Google Scholar 

  8. H.G. Tattersall and G. TappinJournal of Material Science1 (3) (1966) 296–301.

    Google Scholar 

  9. A. HillerborgMaterials and Structures18 (107) (1986) 407–13.

    Google Scholar 

  10. P.E. PeterssonCement and Concrete Research10 (1) (1980) 78–101.

    Google Scholar 

  11. F. Moavenzadeh and R. KuguelJournal of Materials4 (3) (1969) 497–519.

    Google Scholar 

  12. F. RadjyCement and Concrete Research3 (4) (1973) 343–361.

    Google Scholar 

  13. A. Hillerborg, M. Modéer and P.-E. PeterssonCement and Concrete Research6 (6) (1976) 773–782.

    Google Scholar 

  14. M.P. WnukJournal of Applied Mechanics41 (1) series E (1974) 234–42.

    MathSciNet  MATH  Google Scholar 

  15. A. Bascoul, F. Kharchi and J.C. Maso, inFracture of Concrete and Rock Proceedings of SEM-RILEM International ConferenceHouston, June 1987, S.P Shah and S.E. Swartz (eds.) Springer-Verlag, NY (1989) 396–408.

    Google Scholar 

  16. M. Sakai, K. Urashima and M. InagakiJournal of American Ceramics Society66 (12) (1983) 868–74.

    Google Scholar 

  17. T.B. Troczynski and P.S. NicholsonJournal of American Ceramics Society70 (2) (1987) 78–85.

    Google Scholar 

  18. F.H. Wittmann, K. Rokugo, E. Brühwiler, H. Mihashi and P. SimoninMaterials and Structures21 (121) (1988) 21–32.

    Google Scholar 

  19. E. Brühwiler and F.H. WittmannEngineering Fracture Mechanics35 (1/2/3) (1990) 117–25.

    Google Scholar 

  20. F.H. Wittmann, H. Mihashi and N. NomuraEngineering Fracture Mechanics35 (1/2/3) (1990) 107–15.

    Google Scholar 

  21. W. Brameshuber and H.K. HilsdorfEngineering Fracture Mechanics35 (1/2/3) (1990) 95–106.

    Google Scholar 

  22. P. Nallathambi and B.L. KarihalooCement and Concrete Research16 (3) (1986) 373–82.

    Google Scholar 

  23. S.E. Swartz and T.M.E. Refai, inFracture of Concrete and Rock Proceedings of SEM-RILEM International ConferenceHouston, June 1987, S.P. Shah and S.E. Swartz (ed.), Springer-Verlag, NY (1989) 242–254.

    Google Scholar 

  24. Y.S. Jenq and S.P. ShahEngineering Fracture Mechanics21 (5) (1985) 1055–1069.

    Google Scholar 

  25. S. XU and G. Zhao, inFracture Toughness and Fracture Energy Test Methods for Concrete and Rock Preprints of the Proceedings of an International WorkshopSendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 48–62.

    Google Scholar 

  26. R.W. Davidge and G. TappinJournal of Material Science3 (2) (1968) 165–73.

    Google Scholar 

  27. A. Hillerborg, inFracture Toughness and Fracture Energy Test Methods for Concrete and Rock Preprints of the Proceedings of an International WorkshopSendai, Japan, October 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 121–127.

    Google Scholar 

  28. P. Maturana, J. Planas and M. ElicesEngineering Fracture Mechanics35 (4/5) (1990) 827–834.

    Google Scholar 

  29. J. Planas, P. Maturana, G. Guinea and M. Elices, inAdvances in Fracture Research Proceedings of an International Conference (ICF7 Vol. 2)Houston, March 1989, Salama et al (eds.), Pergamon Press, Oxford (1989) 1890–1817.

    Google Scholar 

  30. J. Planas and M. Elices, inFracture Toughness and Fracture Energy Test Methods for Concrete and Rock Preprints of the Proceedings of an International WorkshopSendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 1–18.

    Google Scholar 

  31. Z.P. Baïant, R. Gettu and M.T. KazemiInternational Journal of Rock Mechanics and Mining Sciences28 (1991) 43–51.

    Google Scholar 

  32. R. Gettu, Z.P. Baïant and M.E. Karr, Fracture Properties and Brittleness of High Strength ConcreteReportNo.89–10/B627f, Center for Advanced Cement-Based Materials, Northwestern University (1989); alsoACI Materials Journalin press.

    Google Scholar 

  33. H. Tada, P.C. Paris and G.R. IrwinThe Stress Analysis of Cracks Handbook2nd. ed., Paris Production, St. Louis (1985).

    Google Scholar 

  34. Z.P. Baïant and M.T. KazemiInternational Journal of Fracture44 (1990) 111–131.

    Google Scholar 

  35. Z.P. Baïant, and M.T. KazemiJournal of American Ceramics Society73 (1990) 1841–1853.

    Google Scholar 

  36. J. Planas and M. Elices, inCracking and Damage Strain Localization and Size EffectProceedings of France-US Workshop, Cachan, France, 1988. J. Mazars and Z.P. Baïant (eds.), Elsevier, London (1989) 462–476.

    Google Scholar 

  37. H. Horii, Z. Shi and S.-X. Gong, inCracking and Damage Strain Localization and Size EffectProceedings of France-US Workshop, Cachan, France, 1988, J. Mazars and Z.P. Baïant (eds.), Elsevier, London (1989) 104–115.

    Google Scholar 

  38. Z.P. Baïant, and Y. Xi, Statistical Size Effect in Quasibrittle Structures: II. Nonlocal Theory, Report No. 90–5/6165(11), Center for Advanced Cement-Based Materials, Northwestern University, Evanston, Ill., 1990; alsoJournal of Engineering Mechanics ASCEin press.

    Google Scholar 

  39. J. Homeny, T. Darroudi and R.C. BradtJournal of American Ceramics Society63 (5–6) (1980) 326–31.

    Google Scholar 

  40. A. CarpinteriInternational Journal of Solids and Structures25 (4) (1989) 407–429.

    Google Scholar 

  41. P. MartiACI Materials Journal86 (6) (1989) 597–601.

    Google Scholar 

  42. J.L. Shannon, Jr. and D.G. Munz, inChevron-Notched Specimens: Testing and Stress AnalysisASTM STP 855, J.H. Underwood et al. (eds.), ASTM, Philadelphia (1984) 270–280.

    Book  Google Scholar 

  43. K. Matsuki, inFracture Toughness and Fracture Energy Test Methods for Concrete and Rock Preprints of the Proceedings of an International WorkshopSendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 234–248.

    Google Scholar 

  44. J. Huang, and C. LiComposites20 (4) (1989) 361–378.

    Google Scholar 

  45. Z P BaïantCement and Concrete Research17 (6) (1987) 951–967.

    Google Scholar 

  46. M. OrtizInternational Journal of Solids and Structures24 (3) (1988) 231–250.

    Google Scholar 

  47. F. de Larrad, C. Boulay and P. Rossi, inUtilization of High Strength ConcreteProceedings of a Symposium, Stavanger, Norway, June, 1987, I. Holand et al. (eds.), Tapir Publishers (1987) 215–223.

    Google Scholar 

  48. Z.P. Bažant, J.-K. Kim and P.A. PfeifferJournal of Structural Engineering112 (2) (1986) 289–307.

    Google Scholar 

  49. Z.P. Baïant, S.-G. Lee and P.A. PfeifferEngineering Fracture Mechanics26 (1) (1987) 45–57.

    Google Scholar 

  50. M. Sakai and M. InagakiJournal of American Ceramic Society72 (3) (1989) 388–394.

    Google Scholar 

  51. Z.P. Bažant and P.C. PratACI Materials Journal85 (4) (1988) 262–271.

    Google Scholar 

  52. L.J. Malvar and G.E. WarrenMaterials and Structures20 (120) (1987) 440–447.

    Google Scholar 

  53. M. Elices and J. Planas, inFracture Mechanics of Concrete StructuresRILEM TC90-FMA, L. Elfgren (ed.), Chapman and Hall, London (1989) 16–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bažant, Z.P., Kazemi, M.T. (1991). Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. In: Bažant, Z.P. (eds) Current Trends in Concrete Fracture Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3638-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3638-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5615-1

  • Online ISBN: 978-94-011-3638-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics