Skip to main content

Code-type formulation of fracture mechanics concepts for concrete

  • Chapter
Current Trends in Concrete Fracture Research

Abstract

The new model code for the design of concrete structures of the Comite Euro-International du Béton (CEB) includes extensive information on constitutive relations for concrete and reinforcing steel. In this model code relations are also proposed to predict fracture properties of concrete on the basis of fracture mechanics concepts. In particular fracture energy G F is given as a function of concrete grade, maximum aggregate size and temperature. In addition, bilinear stress-strain and crack opening relations are presented. In this paper these relations are verified on the basis of theoretical considerations and available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CEB-FIP Model Code for Concrete Structures, Comité Euro-International du Béton (CEB) Lausanne, 1978.

    Google Scholar 

  2. Eurocode No. 2, Design of Concrete Structures, Part 1, General Rules and Rules for Buildings, Final Draft, December 1988.

    Google Scholar 

  3. CEB-FIP Model Code 1990, First Predraft 1988, Bulletin d’Information No. 190a, 190b, Comité Euro-International du Béton (CEB), Lausanne.

    Google Scholar 

  4. A. Hillerborg, inFracture Mechanics of ConcreteG.C. Sih, (ed.), Martinus Nijhoff Publishers (1983).

    Google Scholar 

  5. Z.P. Bazant and R. Gettu, inFracture of Concrete and Rock: Recent Developments S.P.Shah, S.E. Swartz, B. Barr (eds.), Elsevier Applied Science (1989).

    Google Scholar 

  6. M. PucheRißbreitenbeschränkung und Mindestbewehrung bei Eigenspannungen und Zwang, Deutscher Ausschuß für Stahlbeton, Heft 396, Beuth Verlag, Berlin (1988).

    Google Scholar 

  7. W. Brameshuber, Bruchmechanische Eigenschaften von jungem Beton, Schriftenreihe des Instituts für Massivbau und Baustofftechnologie, Universität Karlsruhe, Heft 5 (1988).

    Google Scholar 

  8. F.H. Wittmann, P.E. Roelfstra, H. Mehashi, Yiun-Yuang Huang, Xin-Hua Zhang and N. Nomura, Materials and Structures 20 (1987), Proceedings of the 9th Annual Meeting of Japan Concrete Institute, Vol.9–2 (1987).

    Google Scholar 

  9. A. Hillerborg, Materials and Structures 18, No. 107 (1985).

    Google Scholar 

  10. P. Nallathambi, B.L. Karihaloo and B.S. Heaton,Cement and Concrete Research15, No. 1 (1985).

    Google Scholar 

  11. W. Tschupak, Der Einfluß der Probengröße auf die Bruchenergie von Mörtel und Beton, Diplomarbeit am Institut für Massivbau und Baustofftechnologie, Universität Karlsruhe (1985).

    Google Scholar 

  12. RILEM Draft Recommendation: TC-50 FMC Fracture Mechanics of Concrete, Material and Structures 18, No. 106, Paris (1985).

    Google Scholar 

  13. P.E. Petersson, Crack growth and development of fracture zones in plain concrete and similar materials, Division of Building Materials, Lund Institute of Technology, Report TVBM-1006, Sweden (1981).

    Google Scholar 

  14. W. Brameshuber and H.K. Hilsdorf, in Proceedings of the International Conference of Fracture and Damage of Concrete and Rock, Vienna (1988).

    Google Scholar 

  15. Z.P. Bazant, inSEM/RILEM International Conference on Fracture of Concrete and Rock S.P.Shah and S.E. Swartz (eds.), Houston, Texas (1987).

    Google Scholar 

  16. W. Brameshuber and H.K. Hilsdorf, inInternational Conference on Fracture of Concrete and Rock S.P.Shah and S.E. Swartz (eds.), Houston, Texas (1987).

    Google Scholar 

  17. International Conference on Recent Developments of Fracture Mechanics of Concrete and RockS.P. Shah, S.E. Swartz and B.I.G. Barr (eds.)Elsevier Publishers, Cardiff (1989).

    Google Scholar 

  18. A.M. Alvaredo and R.J. Torrent, Materials and Structures 20, No. 120, Paris (1987).

    Google Scholar 

  19. A. Hillerborg, Private communication (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hilsdorf, H.K., Brameshuber, W. (1991). Code-type formulation of fracture mechanics concepts for concrete. In: Bažant, Z.P. (eds) Current Trends in Concrete Fracture Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3638-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3638-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5615-1

  • Online ISBN: 978-94-011-3638-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics