Skip to main content

On the Origin of Asymmetric Bell-Shaped Velocity Profiles in Rapid-Aimed Movements

  • Chapter
Tutorials in Motor Neuroscience

Part of the book series: NATO ASI Series ((ASID,volume 62))

Abstract

This paper proposes a stochastical model for the origin and the invariance of the bell-shaped velocity profiles, as frequently reported in studies dealing with rapid aimed movements. The model describes these movements as originating from the sequential action of a set of velocity generators working in cascade. Applying the central limit theorem to describe the converging behavior of such a system, it is shown that velocity profiles can be described by log-normal curves. Results of an analysis by synthesis experiment are reported and some consequences of this approach to the study of human movement are discussed. A unified view of the speed-accuracy trade-offs is proposed as a direct consequence of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend, W., Bizzi, E. and Morasso, P. (1982) “Human arm trajectory formation”, Brain 105, 331–348.

    Article  PubMed  CAS  Google Scholar 

  • Aitchison, J. and Brown, J.A.C. (1966) “The lognormal distribution”, Cambridge University Press, 176 p.

    Google Scholar 

  • Atkeson, C.G. and Hollerbach, J.M. (1985) “Kinematic features of unrestrainted vertical arm movements”, Journal of Neuroscience 5/9, 2318–2330.

    PubMed  CAS  Google Scholar 

  • Beggs, W.D.A. and Howarth, C.I. (1972) “The movement of the hand toward a target” Quaterly Journal of Experimental Psychology 24, 448–453.

    Article  CAS  Google Scholar 

  • Bullock, D. and Grossberg, S. (1987) “Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation”, in S. Grossberg (ed.), Neural Networks and Natural Intelligence, MIT Press, 553–622.

    Google Scholar 

  • Eden, M. (1962) “Handwriting and pattern recognition”, IRE Trans. on Information Theory, vol. IT-8, 160–166.

    Article  Google Scholar 

  • Fitts, P.M. (1954) “The information capacity of the human motor system in controlling the amplitude of movement”, Journal of Experimental Psychology 47/6, 381–391.

    Article  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F. and Massey, J.T. (1981) “Spatial trajectories and reaction time of aimed movements: effects of practice, uncertainty, and change in target location”, Journal of Neurophysiology 46/4, 725–743.

    PubMed  CAS  Google Scholar 

  • Gibson, A.R., Houk, J.C. and Kohlerman, N.J. (1985) “Relation between red nucleus discharge and movement parameters in trained macaque monkeys”, Journal of Physiology 358 (London), 551–570.

    PubMed  CAS  Google Scholar 

  • Houk, J.C. and Gibson, A.R. (1987) “Sensorimotor processing through the cerebellum”, in New Concepts in Cerebellar Neurobiology, Alan R. Liss Inc., 387–416.

    Google Scholar 

  • Houk, J.C. (1989) “Burst of discharge recorded from the red nucleus may provide real measures of Gottlieb’s excitation pulses”, Behavioral and Brain Sciences 12/2, 224–225.

    Article  Google Scholar 

  • Kapteyn, J.C. (1903) “Skew frequency curves in biology and statistics”, Astronomical Laboratory, Groningen: Noordhoff.

    Google Scholar 

  • Kapteyn, J.C. and van Uven (1916) “Skew frequency curves in biology and statistics”, Groningen, Hoitsema Bros., 75 p.

    Google Scholar 

  • Liapounoff, A. (1900) “Sur une proposition de la théorie des probabilités”, Bulletin de l’Académie des Sciences, St-Petersbourg 13, 359.

    Google Scholar 

  • Liapounoff, A. (1901) “Nouvelle forme du théorème sur la limite de la probabilité”, Mémoire de l’Académie des Sciences, St-Petersbourg 12/5.

    Google Scholar 

  • Maarse, F.J. (1987) “The study of handwriting movement: peripheral models and signal processing techniques”, Swets and Zerthinger, Lisse, The Netherlands, 160 p.

    Google Scholar 

  • McAlister, D. (1879) “The law of geometric mean”, Proceedings of the Royal Society of London 29, 367–376.

    Article  Google Scholar 

  • Mermelstein, P. (1963) “Study of the handwriting movement”, Quaterly Progress Report n 69, MIT Research Laboratory of Electronics, 229–232.

    Google Scholar 

  • Morasso, P. (1981) “Spatial control of arm movements”, Experimental Brain Research 42, 223–227.

    Article  CAS  Google Scholar 

  • Morasso, P. and Mussa Ivaldi, F.A. (1982) Trajectory formation and handwriting: a computational model”, Biological Cybernetics 45, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Newell, K.M. (1980) “The speed-accuracy paradox in movement control: errors of time and space”, in G.E. Stelmach, J. Requin (eds.), Tutorials in Motor Behavior, North-Holland, 501–510.

    Chapter  Google Scholar 

  • Newell, K.M., Hoshizaki, L.E.F., Carlton, M.J. (1979) “Movement time and velocity as determinants of movement timing accuracy”, J. Motor Behavior 1, vol. 11, 49–58.

    CAS  Google Scholar 

  • Plamondon, R. (1990a) “A fundamental law of human movment”, NIAS Conference on Sequencing and Timing of Human Movement, 19–20.

    Google Scholar 

  • Plamondon, R. (1990b) “A unified approach to the study of target directed movements”, Nato Advanced Study Institute, Tutorials in Motor Neuroscience Corsica, sept. 15–24.

    Google Scholar 

  • Plamondon, R. (1990c) “A general framework for the understanding of rapid aimed movement”, accepted, Human Movement Science, Special Issue on Sequencing and Timing, 22 p.

    Google Scholar 

  • Plamondon, R., Yu, L.D., Stelmach, G.E. and Clément, B. (1990a) “On the automatic extraction of biomechanical information from handwriting signals”, in press, IEEE Trans. on Systems, Man and Cybernetics.

    Google Scholar 

  • Plamondon, R., Stelmach, G.E. and Teasdale, N. (1990b) «Motor program coding representation from handwriting generators models: the production of lines responses», in press, Biol. Cybernetics.

    Google Scholar 

  • Plamondon, R. and Yergeau, P. (1990) “A system for the analysis and synthesis of handwriting”, Proc. Int. Workshop on Frontier in Handwriting Recognition, 105–111.

    Google Scholar 

  • Plamondon, R. and Clément, B. (1990) “Dependence of peripheral and central parameters describing handwriting generation on movement direction”, in press, Human and Movement Science, Thematic Issue on Handwriting.

    Google Scholar 

  • Plamondon, R. (1989) “Handwriting control: a functional model”, in R. Cotterill (ed.), Models of Brain Functions, Cambridge University Press, 563–574.

    Google Scholar 

  • Plamondon, R. and Maarse, F.J. (1989) “An evaluation of motor models of handwriting”, IEEE Trans. on System, Man and Cybernetics, 1060–1072.

    Google Scholar 

  • Plamondon, R. and Parizeau, M. (1988) “Signature verification from position velocity and acceleration signals: a comparative study”, Proc. 8th Int. Conf. on Pattern Recognition, Rome, 260–265.

    Google Scholar 

  • Plamondon, R. and Lamarche, F. (1986) “Modelization of handwriting a system approach”, in H.S.R. Kao, G.P. van Galen, R. Hoosain (eds.), Graphonomics: Contemporary Research in Handwriting, Elsevier Science Publishers, B.V., 169–183.

    Chapter  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988) “Numerical Recipies in C”, Cambridge University Press, Cambridge, 540–547.

    Google Scholar 

  • Schmidt, R.A., Zelaznik, H.N., Hawkins, B., Frank, J.S. and Quinn, J.T. (1979) “Motor output variability: a theory for the accuracy of rapid motor acts”, Psychological Review 86, 415–451.

    Article  Google Scholar 

  • Soechting, J.F. and Laquantini, F. (1981) “Invariant characteristics of a pointing movement in man”, Journal of Neuroscience 1/7, 710–720.

    PubMed  CAS  Google Scholar 

  • Vredenbregt, J. and Koster, W.G. (1971) “Analysis and synthesis of handwriting”, Philips Tech. Rev., vol. 32, 73–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Plamondon, R. (1991). On the Origin of Asymmetric Bell-Shaped Velocity Profiles in Rapid-Aimed Movements. In: Requin, J., Stelmach, G.E. (eds) Tutorials in Motor Neuroscience. NATO ASI Series, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3626-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3626-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5609-0

  • Online ISBN: 978-94-011-3626-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics