Skip to main content

Outline for a Theory of Motor Learning

  • Chapter
Tutorials in Motor Neuroscience

Part of the book series: NATO ASI Series ((ASID,volume 62))

Abstract

This paper outlines a new theory of motor learning. The theory is constrained by the anatomy and physiology of sensorimotor pathways through the cerebellum, motor cortex, brainstem and spinal cord. It also draws upon recent knowledge regarding cellular and molecular properties and receives insight from the results of learning experiments with artificial neural networks. The zonal organization that aligns climbing fibers, Purkinje cells and nuclear cells in the cerebellum provides an ideal neuronal architecture for efficient learning. Climbing fibers are postulated to acquire properties that improve their ability to train sets of Purkinje cells. The Puikinje cells then control movements by selectively inhibiting premotor networks. Repetition of this control establishes motor habits that are then carried out automatically by the premotor networks. Long-term repetition is postulated to align the topography of the overall network utilizing trophic mechanisms. These processes in combination are considered capable of explaining the salient features of motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, J.S. (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Allen, G.I., Tsukahara, N. (1974) Cerebrocerebellar communication systems. Physiol. Rev 54: 957–1006

    PubMed  CAS  Google Scholar 

  • Andersson, G., Armstrong, D.M. (1987) Complex spikes in Puikinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J. Physiol. Lond. 385: 107–134

    PubMed  CAS  Google Scholar 

  • Andersson, G., Ekerot, C.-R., Oscarsson, O., Schouenborg, J. (1987) Convergence of afferent paths to olivo-cerebellar complexes. In: Glickstein, M., Yeo, C., Stein, J. (eds) Cerebellum and Neuronal Plasticity. London, Plenum Press, pp 165–173

    Chapter  Google Scholar 

  • Andersson, G., Garwicz, M., Hesslow, G. (1988) Evidence for a GABA-mediated cerebellar inhibition of the inferior olive in the cat. Exp. Brain Res 72: 450–456

    Article  PubMed  CAS  Google Scholar 

  • Barto, A.G. (1989) Connectionist Learning for Control:An Overview. COINS Technical Report, Vol 89–89. Amherst, Massachusetts Univ. of Massachusetts

    Google Scholar 

  • Barto, A.G., Berthier, N., Singh, S., Houk, J.C. (1990) Network model of the cerebellum and motor cortex that learns to control planar limb movement. Soc. Neurosci. abstr

    Google Scholar 

  • Barto, A.G., Sutton, R.S., Anderson, C.W. (1983) Neuronlike elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics 13: 835–846

    Article  Google Scholar 

  • Barto, A.G., Sutton, R.S., Brouwer, P.S. (1981) Associative search network: reinforcement learning associative memory. IEEE Transactions on Systems, Man, and Cybernetics 40: 201 - 211

    Google Scholar 

  • Brown, T.H., Ganong, A.H., Kairiss, E.W., Keenan, C.L., Kelso, S.R. (1989) Long-term potentiation in two synaptic systems of the hippocampal brain slice. In: Byrne, J.H., Berry, W.O. (eds) Neural Models of Plasticity, Ch. 14. San Diego, Academic Press, pp 266–306

    Google Scholar 

  • Crepel, F.C., Krupa, M. (1988) Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 458: 397– 401

    Article  PubMed  CAS  Google Scholar 

  • Doré, L., Jacobson, C.D., Hawkes, R. (1990) Organization and postnatal development of Zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica. J. Comp. Neurol 291: 431–449

    Article  PubMed  Google Scholar 

  • Eccles, J.C., Llinás, R., Sasaki, K. (1966) The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J. Physiol. London 182: 268–296

    PubMed  CAS  Google Scholar 

  • Eisenman, L.N., Keifer, J., Houk, J.C. (1990) Computer studies of the role of NMDA receptors and positive feedback loops in the generation of descending motor commands. Soc. Neurosci. abstr

    Google Scholar 

  • Ekerot, C.-F., Oscarsson, O., Schouenborg, J. (1987) Stimulation of cat cutaneous nociceptive C fibres causing tonic and synchronous activity in climbing fibres. J. Physiol 386: 539–546

    PubMed  CAS  Google Scholar 

  • Ekerot, C.-F. (1984) Climbing fibre actions of Purkinje cells - plateau potentials and long-lasting depression of parallel fibre responses. In: Bloedel, J., et al. (eds) Cerebellar Functions. Berlin, Springer-Verlag, pp 268–274

    Chapter  Google Scholar 

  • Gellman, R., Gibson, A.R., Houk, J.C. (1985) Inferior olivary neurons in the awake cat: Detection of contact and passive body displacement. J. Neurophysiol 54: 40–60

    PubMed  CAS  Google Scholar 

  • Gellman, R., Houk, J.C., Gibson, A.R. (1983) Somatosensory properties of the inferior olive of the cat. J. Comp. Neurol 215: 228–243

    Article  PubMed  CAS  Google Scholar 

  • Gravel, C., Eisenman, L.M., Sasseville, R., Hawkes, R. (1987) Parasagittal organization of the rat cerebellar cortex: Direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J. Comp. Neurol 265: 294– 310

    Article  PubMed  CAS  Google Scholar 

  • Houk, J.C. (1989) Cooperative control of limb movements by the motor cortex, brainstem and cerebellum. hi: Cotterill, R.M.J. (ed) Models of Brain Function. Cambridge, Cambridge Univ Press, pp 309–325

    Google Scholar 

  • Houk, J.C. (1990) Role of the cerebellum in classical conditioning. Soc. Neurosci. abstr

    Google Scholar 

  • Houk, J.C., Singh, S.P., Fisher, C., Barto, A.G. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Miller, W.T., Sutton, R.S., Werbos, P.J. (eds) Neural Networks for Control. Cambridge, Mass., MIT Press

    Google Scholar 

  • Ito, M. (1989) Long-term depression. Ann. Rev. Neurosci 12: 85–102

    Article  PubMed  CAS  Google Scholar 

  • Jansen, J., Brodal, A. (1942) Experimental studies on the intrinsic fibers of the cerebellum. The corticonuclear projection in the rabbit and in the monkey (Macacus rhesus.). Norske Vid. Akad., Oslo, Avh. I. Mat. Natury, K1 3: 1–50

    Google Scholar 

  • Linsker, R. (1988) Self-organization in a perceptual network. IEEE Computer 105–117

    Google Scholar 

  • Llinás, R., Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. London 305: 197–213

    PubMed  Google Scholar 

  • Llinás, R., Yarom, Y. (1981) Electiophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. London 315: 549–567

    PubMed  Google Scholar 

  • Marr, D. (1969) A theory of cerebellar cortex. J. Physiol 202: 437–470

    PubMed  CAS  Google Scholar 

  • McCurdy, M. (1988) Sensory input to the forelimb inferior olive and its relationships to motor pathways. Ph.D. Thesis, Northwestern University

    Google Scholar 

  • Nelson, B.J., Mugnaini, E. (1989) Origins of GABAergic inputs to the inferior olive. Exp. Brain Res, Series 17, pp 86–107

    Google Scholar 

  • Oscarsson, O. (1980) Functional Organization of Olivary Projection to the Cerebellar Anterior Lobe. In: J. Courville et al. (ed) The Inferior Olivary Nucleus: Anatomy and Physiology. New York, New York, Raven Press, pp 279–289

    Google Scholar 

  • Peterson, B.W., Baker, J.F., Houk, J.C. (in press) A model of adaptive control of vestibuloocular reflex based on properties of cross-axis adaptation. Ann. N.Y. Acad. Sci.

    Google Scholar 

  • Purves, D. (1988) Body and Brain:a Trophic Theory of Neural Connections. Cambridge, Mass., Harvard Univ. Press

    Google Scholar 

  • Sakamoto, T., Porter, L.L., Asanuma, H. (1987) Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res 413: 360–364

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J.N., Suner, S., Lando, J.F., Donoghue, J.P. (1988) Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc. Natl. Acad. Sci. USA 85: 2003–2007

    Article  PubMed  CAS  Google Scholar 

  • Scott, T.G. (1964) A unique pattern of localization within the cerebellum of the mouse. J. Comp. Neurol. 122: 1–8

    Article  Google Scholar 

  • Shinoda, Y., Futami, T., Mitoma, H., Yokota, J. (1988) Morphology of single neurones in the cerebello-rubrospinal system. Beh. Brain Res 28: 59–64

    Article  CAS  Google Scholar 

  • Shinoda, Y., Yamaguchi, T., Futami, T. (1986) Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J. Neurophysiol 55: 425–448

    PubMed  CAS  Google Scholar 

  • Sinkjaer, T., Wu, C.H., Barto, A., Houk, J.C. (1990) Cerebellum control of endpoint position-a simulation model. Proc. of Intern’l Joint Conference on Neural Networks, San Diego

    Google Scholar 

  • Stanton, P.K., Sejnowski, T.J. (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Voogd, J., Bigaré, F. (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum. A review. In: Courville, J., Montigny, C. de, Lamarre, Y. (eds) The Inferior Olivary Nucleus. New York, Raven Press, pp 207–234

    Google Scholar 

  • Weiss C., Houk J.C., Gibson A.R. (1990) Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J Neurophysiol 64: In Press

    Google Scholar 

  • White, Burton (1971) Human Infants, Experience and Psychological Development Engjewood Cliffs, N.J., Prentice-Hall, Inc.

    Google Scholar 

  • Willshaw, D.J. and Malsburg von der, C. (1976) How patterned neural connections can be set up by self-organization. Proc. R. Soc. Lond. B. 194: 431–445

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Houk, J.C. (1991). Outline for a Theory of Motor Learning. In: Requin, J., Stelmach, G.E. (eds) Tutorials in Motor Neuroscience. NATO ASI Series, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3626-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3626-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5609-0

  • Online ISBN: 978-94-011-3626-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics