Skip to main content

Microwave Ionization of H Atoms: Experiments in Classical and Quantal Dynamics

  • Chapter
The Electron

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 45))

  • 423 Accesses

Abstract

Experiments on microwave ionization of hydrogen atoms at various frequencies compared with theoretical calculations have shown that the problem may be divided into different regions of distinct behavior depending on the precise experimental situation. Some regions may be described up to a certain level of accuracy using classical atomic dynamics while others require quantum atomic dynamics. At a more detailed level, the latest comparisons with theoretical calculations indicate that experimentally we can measure atomic quantal interferences in an otherwise “classical region” and make links to classical atomic dynamics in an otherwise “quantal region”. In the latter case, “scars” promise to play a particularly important role in the understanding of how quantal and classical dynamics merge for a system whose classical dynamics is at least partly chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Irregular” here means chaotic in the sense of exponentially unstable for finite times, as opposed to infinite times (see e.g., T. Tel, “Transient chaos’, to be published in ’Directions in Chaos, Vol. 3’, Bai-Lin Hao (ed.), World Scientific, Singapore). This is numerically proven for the system discussed in this chapter by calculating the Liapunov exponents in [3] for the Kepler map that is believed to be a good approximation of the 1D-ordinary differential equation model of a hydrogen atom in a microwave field.

    Google Scholar 

  2. Moorman L., Koch P.M. (1991) ’Microwave ionization of Rydberg atoms’, Bai-Lin Hao, Da Hsuan Feng, Jian-Min Yuan (eds.), Directions in Chaos, Vol. 4, World Scientific, Singapore, Ch 2, to appear.

    Google Scholar 

  3. HafFmans, A.F., Moorman, L., Rabinovitch, A., and Koch, P.M., ’Initial condition phase space stability pictures of two dimensional area preserving maps’, in preperation

    Google Scholar 

  4. Leeuwen K.A.H. van, Oppen G. v., Renwick S., Bowlin J.B., Koch P.M., Jensen R.V., Rath O., Richards D., and Leopold J.G. (1985) ‘Microwave ionization of hydrogen atoms: Experiment versus classical dynamics’, Phys. Rev. Lett. 55, 2231–4

    Article  ADS  Google Scholar 

  5. Casati G., Chirikov B.V., Shepelyansky D.L. (1984) ’Quantum limitation for chaotic excitation of the hydrogen atom in a monochromatic field’, Phys. Rev. Lett. 53, 2525–28

    Article  ADS  Google Scholar 

  6. Galvez E.J., Sauer B.E., Moorman L., Koch P.M., and Richards D. (1988) ’Microwave ionization of hydrogen atoms: Breakdown of classical dynamics for high frequencies’, Phys. Rev. Lett. 61, 2011–14

    Article  ADS  Google Scholar 

  7. Bayfield J.E., Casati G., Guarneri I., Sokol D.W. (1989) ‘Localization of classically chaotic diffusion for hydrogen atoms in microwave fields’ Phys. Rev. Lett. 63, 364–67

    Article  ADS  Google Scholar 

  8. Koch P.M. (1990) ‘Microwave ionization of excited hydrogen atoms: What we do and do not understand’, in D.K. Campbell (ed.) Soviet American conference on Chaos, Woods Hole, AIP, pp. 441–475

    Google Scholar 

  9. Richards, D., Leopold, J.G. (1990) ‘Classical ghosts in quantal microwave ionisation’, in ‘The physics of electronic and atomic collisions, XVI, A. Dalgarno, et al. (eds.), AIP conference proceedings, 205, New York, p. 492–8

    Google Scholar 

  10. Koch P.M., (1990) ‘Microwave excitation and ionization of excited hydrogen atoms’, in S. Krasner (ed.) “Chaos” perspecitves on nonlinear science’, AAAS, Washington, p 75–97

    Google Scholar 

  11. Water W. van de, Leeuwen K.A.H. van, Yoakum S., Galvez E.J., Moorman L., Bergeman T., Sauer B.E., and Koch P.M. (1989) ‘Microwave multiphoton excitation of helium Rydberg atoms: The analogy with atomic collisions’, Phys. Rev. Lett. 63, 762–65

    Article  ADS  Google Scholar 

  12. Water W. van de, Leeuwen K.A.H. van, Yoakum S., Galvez E.J., Moorman L. Sauer B.E., and Koch P.M. (1989) ‘Microwave multiphoton ionization and excitation of helium Rydberg atoms’, Phys. Rev. A 42, 572–91

    Article  Google Scholar 

  13. Berry M.V. (1989) ‘Quantum Chaology, not Quantum Chaos’, Phys. Script. 40, 335–336

    Article  ADS  MATH  Google Scholar 

  14. Gutzwiller, M.C. (1990) ’Chaos in classical and quantum mechanics’ Springer Verlag, Interdiscipl. Appl. Math., Vol 1, New York

    MATH  Google Scholar 

  15. Moorman L., Galvez E.J., Sauer B.E., Mortazawi-M A., Leeuwen K.A.H. van, Oppen G. v., and Koch P.M. (1989) ’Two-frequency microwave quenching of highly excited hydrogen atoms’in Phys. Rev. Lett. 61, 771–74

    Article  ADS  Google Scholar 

  16. Moorman L., Galvez E.J., Sauer B.E., Mortazawi-M A., Leeuwen K.A.H. van, Oppen G. v., and Koch P.M. (1989) ’Two-freqeuncy microwave quenching of highly excited hydrogen atoms’ in ’Atomic Spectra and Collisions in External Fields 2’, eds. K.T. Taylor, M.H. Nayfeh, and C.W. Clark, Plenum Press, 343–57

    Google Scholar 

  17. Koch P.M., Moorman L., Sauer B.E., Galvez E.J., and Leeuwen K.A.H. van (1989) ’Experiments in quantum chaos: Microwave ionization of highly excited hydrogen atoms’ Phys. Script. T26, 51–57

    Article  ADS  Google Scholar 

  18. Koch P.M. (1988) ’Microwave ioniztion of highly excited hydrogen atoms: A driven quantal system in the classical chaotic regime’ in H.B. Gilbody et al. (eds.), Electronic and Atomic Collisions, North-Holland, Amsterdam, p 501–16

    Google Scholar 

  19. Koch, P.M., Mariani, D.R. (1981) ’Precise measurement of the static electric field ionization rate for resolved hydrogen Stark substates ’ in Phys. Rev. Lett. 1275–78

    Google Scholar 

  20. Banks, D., Leopold, J.G., (1978) in ’Ionization of highly-excited atoms by electric fields: (I) Classical theory of the critical electric field for hydrogenic ions’ J. Phys. B: Atom. Molec. Phys. 11 37–46; and in (1978) ’(II) Classical theory of the Stark effect’ J. Phys. B: At. Molec. Phys. U, 2833–43

    Article  ADS  Google Scholar 

  21. Koch, P.M., (1983) ’Rydberg studies using fast beams’ in Rydberg States of Atoms and Molecules, R.F. Stebbings and F.B. Dunning (eds.), Cambridge University Press, New York, p 473–512

    Google Scholar 

  22. Kleppner, D., Littman, M.G., Zimmerman M.L. (1983) Rydberg atoms in strong fields’, in R.F. Stebbings and F.B. Dunning (eds.) Cambridge University Press, New York, p 73–116

    Google Scholar 

  23. Blümel R. and Smilansky U. (1987) ’Microwave ionization of highly excited hydrogen atoms’, Z. Phys. D: Atoms, Molec. and Clusters 6, 83–105

    Article  ADS  Google Scholar 

  24. Landau, L.D., and Lifshitz, E.M. (1976) ‘Course of theoretical physics, Vol. 1: Mechanics’ 3rd edition, Pergamon Press, Oxford, Ch. 3

    Google Scholar 

  25. Goldstein, H.(1977) ‘Classical Mechanics’, Addison Wesley Inc., Reading, 12th edition, Ch. 3.6

    Google Scholar 

  26. Halbach K. and Holsinger R.F. (1976) ’SUPERFISH, a computer program for the evaluation of RF cavities with cylindrical symmetries’, in Part. Accel. 7, 213–22

    Google Scholar 

  27. Sauer B.E., Leeuwen K.A.H. van, Mortazawi-M A., and Koch P.M. (1991) ’Precise calibration of a microwave cavity with a nonideal waveguide system’, Rev. Scient. Instr. 62, 189–97

    Article  ADS  Google Scholar 

  28. Leopold J.G., and Percival I.C. (1978) ’Microwave ionization and excitation of Rydberg atoms’, Phys. Rev. Lett. 41, 944–7

    Article  ADS  Google Scholar 

  29. Leopold J.G. and Richards D. (1985) ’The effect of a resonant electric field on a one-dimensional classical hydrogen atom’ J. Phys. B: Atom. Mol. Phys. 18, 3369–94

    Article  ADS  Google Scholar 

  30. Born M., ’The mechanics of the atom’ (1924), Republished by Frederick Ungar publishing co., New York (1960).

    Google Scholar 

  31. The principal action variable is In = Ir + Iθ + Iϕ, the total angular momen tum is I1= Iθ + Iϕ‚ and the component of the angular momentum onto the polar axis is Im = 1 with 2πIi = §Pidri for i = r, θ, and (and no sum convention) [30,32]. The quantization conditions become In = nћ, I1 = kћ, and in a magnetic field Im = mћ. In the old quantum theory n = 1,2, • • is the principal quantum number and k is the subsidiary (or azimuthal) quantum number [30]. This would be k = 1, 2, • • ‚ n, however modern quantization methods (Einstein-Brillouin-Keller) require k = l + 1/2 with l = 0,1,2, • • • ‚n, in which the 1/2 does not refer to the spin but to the Maslov (or Morse) index in semi-classical quantization. This index counts the number of classical turning points α encountered by a closed trajectory in the classical phase space (for a more general description in terms of caustics see [79]). At each turning point a phase-loss of π/2 (equivalent to 1/4th of a wave) has to be taken into account. Continuity of the hase of the wave function then leads to I = (n +½α )ћ. For example the 1 dimensional harmonic oscillator encountering two turning points per period obtains for the same reason (but named after Wentzel- Kramers-Brillouin) the well known ’zero-point’ energy, as given in Ev = (v -½)ћA for v = 0,1, • • . For further reading and how this can be understood from conditions to be satisfied under a coordinate transformation of a pathintegral from Cartesian into spherical coordinates, requiring a new term ~ ½ћ2 in the classical Hamiltonian, which adds to the angular momentum part \L\2 = l(l - 1)ћ2 giving (l + ½)2ћ2, see p 203 and 212 etc. of [14].

    Google Scholar 

  32. Percival I.C., and Richards D. (1975) ’The theory of collisions between charged particles and highly excited atoms’, in ’Advances in atomic and molecular physics’, Vol 11, pl–82

    Google Scholar 

  33. Series, G.W. (1988), ’The spectrum of the hydrogen atom: Advances’, World Scientific Publishing Co, (or the 1957 original version of part I, by Oxford University Press) p20–24.

    Google Scholar 

  34. Woodgate, G.K. (1980) ’Elementary Atomic Structure’, Clarendon Press, Oxford, 2nd ed., p22

    Google Scholar 

  35. Vol 3 of [24] (1977) ’Quantum Mechanics’ 3rd edition, Pergamon Press, Oxford, p. 120

    Google Scholar 

  36. Bethe, H.A., Salpeter, E.E. (1977) ’Quantum mechanics of one and two electron atoms’, Plenum/Rosetta, Oxford, p.17; p.58

    Book  Google Scholar 

  37. Meerson B.I., Oks E.A., and Sasorov P.V. (1982) ’A highly excited atom in a field of intense resonant electromagnetic radiation: I Classical Motion’, J. Phys. B: Atom. Mol. Phys. 15, 3599

    Article  ADS  Google Scholar 

  38. Jensen R.V. (1984) ’Stochastic ionization of surface-state electrons: Classical theory’, Phys. Rev. A30, 386–97

    ADS  Google Scholar 

  39. Leopold J.G. and Richards D. (1986) (The effect of a resonant electric field on a classical hydrogen atom’ J. Phys. B: Atom. Mol. Phys. 19, 1125–42

    Article  ADS  Google Scholar 

  40. Jensen, R.V. (1987) ’Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms’, Physica Scripta 35, 66S

    Article  Google Scholar 

  41. Richards, D. (1990) ’The Coulomb potential and microwave ionization’, International conference on the physcis of electronic and atomic collisions, New York 1989, AIP, 54–64

    Google Scholar 

  42. Sanders M.M., Jensen R.V., Koch P.M. and Leeuwen K.A.H. van (1987) ’Chaotic ionization of highly excited hydrogen atoms’, Nucl. Phys. B (Proc. suppl.) 2, 578–579

    Article  Google Scholar 

  43. Blümel R. and Smilansky U. (1989) ’Ionization of excited hydrogen atoms by microwave fields: a test case for quantum chaos’, Physica Scripta 40, 386–93.

    Article  ADS  Google Scholar 

  44. Richards D., Leopold J.G., Koch P.M., Galvez E.J., Leeuwen K.A.H. van, Moorman L., Sauer B.E., and Jensen R.V. (1989) ’Structure in low frequency microwave ionization of excited hydrogen atoms’, J. Phys. B 22, 1307

    Article  ADS  Google Scholar 

  45. Blümel R. and Smilansky U. (1987) ’Localization of Floquet states in the rf excitation of Rydberg atoms’, Phys. Rev. Lett. 58, 2531–4

    Article  ADS  Google Scholar 

  46. Blümel R., Goldberg J., and Smilansky U. (1988) ’Features of hte quasienergy spectrum of the hydrogen atom in a microwave field’ Z. Phys. D: Atoms, Molec, and Clusters 9, 95 and Blümel, R., Hillermeier, R.C., and Smilansky, U. (1990) Z. Phys. D 15, 267

    Article  Google Scholar 

  47. Blümel, R., Hillermeier, R.C., and Smilansky, U. (1990) Z. Phys. D 15, 267

    Article  ADS  Google Scholar 

  48. Koch P.M. (1982) ’Interactions of intense fields with microwave atoms’, Journal de Physique Colloque 43, C2–187

    Google Scholar 

  49. Casati G., Chirikov B.V., Shepelyansky D.L., and Guarneri I. (1987) ’Localization of diffusive excitation in the two- dimensional hydrogen atom in a monochromatic field’, Phys. Rev. Lett. 59, 2927

    Article  ADS  Google Scholar 

  50. Casati G., Chirikov B.V., Shepelyansky D.L., and Guarneri I. (1987) ’Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field’, Phys. Rep. 154, 77

    Article  ADS  Google Scholar 

  51. Casati G., I. Guarneri I., Shepelyansky D.L. (1987) ’Exponential photonic localization for the hydrogen atom in a monochromatic field’, Phys. Rev. A 36, 3501

    Article  ADS  Google Scholar 

  52. Casati G., I. Guarneri I., Shepelyansky D.L. (1988) ’Hydrogen atom in monochromatic field: Chaos and dynamical photonic localization’ I.E.E.E.: J. Quantum Electron. 24, 1420

    Article  ADS  Google Scholar 

  53. D. Richards (private communication).

    Google Scholar 

  54. Sakurai, J.J. (1978) in ’Advanced quantum mechanics’ in series in advanced physics, Addison-Wesley, 7th printing, p.35 and p.38

    Google Scholar 

  55. Graffi, S., Grecchi, V., Silverstone, H.J. (1985) in ’Annales de l’institute de Henry Poincaré - Physique theorique’, Vol 42, p. 215–234

    MathSciNet  MATH  Google Scholar 

  56. Richards D., (1987) J. of Phys. B At. Mol. Phys. 20, 2171–92

    Article  ADS  Google Scholar 

  57. Casati, G., Guarneri, I, Shepelyansky, D.L. (1990) ’Classical chaos, quantum localization and fluctuations: A unified view’ Physica A 163, 205

    Article  ADS  Google Scholar 

  58. Grempel D.R., Prange RE., and Fishman S. (1984) ’Quantum dynamics of a nonintegral system’, Phys. Rev. A 29, 1639–47

    Article  ADS  Google Scholar 

  59. Fishman S., Grempel D., Prange R.E. (1982) ’Chaos, Quantum recurrences and Anderson localization’ Phys. Rev. Lett. 49, 509–12

    Article  MathSciNet  ADS  Google Scholar 

  60. Koch P.M., Moorman L., Sauer B.E. (1990) ’Microwave ionization of excited hydrogen atoms: experiments versus theories for high scaled frequencies’ in a special issue on Quantum Chaos of ’Comments on Atomi- and Molecular Physics’, Vol.25, pp. 165–183

    Google Scholar 

  61. Brivio ‚ Casati G., Guarneri I, and Perotti L. (1988) ’Quantum suppression of chaotic diffusion: theory and experiment’ Physica 33D, 51–57

    MathSciNet  ADS  Google Scholar 

  62. Richards, D., Leopold, J.G. (1990), ’On the Quantum Kepler Map’ J. Phys. B: At. Mol. Opt. Phys. 23, 2911–2927

    Article  ADS  Google Scholar 

  63. Jensen R.V., Susskind S.M., Sanders M.M. (1989) ’Microwave ionization of highly excited hydrogen atoms: A test of the correspondence principle’, Phys. Rev. Lett. 62, 1476–79

    Article  ADS  Google Scholar 

  64. Jensen, R.V., Leopold, J., Richards, D. (1988) ’High- frequency microwave ionization of hydrogen atoms’J. Phys. B: At. Mol. Phys. 21, L527–31

    Article  ADS  Google Scholar 

  65. Richards D., Leopold J.G., and Jensen R.V. (1988) ’Classical and quantum dynamics in high frequency fields’, J. Phys. B: At. Mol. Phys. 22, 417–33

    ADS  Google Scholar 

  66. Leopold, J.G., Richards, D. (1989) ’Quasi-Resonances for high frequency perturbations’ J. Phys. B 22, 1931

    Article  ADS  Google Scholar 

  67. Leopold J.G. and Richards D. (1988) ’A study of quantum dynamics in the classically chaotic regime’ J. Phys. B: At. Mol. Phys. 21, 2179–2204

    Article  MathSciNet  ADS  Google Scholar 

  68. Leopold, J.G., and Richards, D. (1988) ’Quantal localization and the uncertainty principle’, Phys. Rev. A 38, 2660–3

    Article  ADS  Google Scholar 

  69. Mackay, R.S., and Meiss, J.D. (1988) ’Relation between quantum and classical thresholds for multiphoton ionization of excited atoms’, Phys. Rev. A 37, 4702–7

    Article  ADS  Google Scholar 

  70. Meiss, J.D., (1989) ’Comment on “Microwave ionization of H- atoms: breakdown of classical dynamics for high frequencies” by E.J. Galvez et al.’ in Phys. Rev. Lett. 62, 1576

    Article  ADS  Google Scholar 

  71. Breuer, H.P., Dietz, K., Holthaus, M. (1988) ’The role of avoided crossings in the dynamics of strong laser field-matter interactions’ Z.Phys. D: Atoms, Molec. and Clusters 8, 349

    Article  ADS  Google Scholar 

  72. Breuer, H.P., Dietz, K., Holthaus, H. (1988) in Z. Phys. D 10, 12; and (1989)

    Article  ADS  Google Scholar 

  73. Breuer, H.P., Dietz, K., Holthaus, H. (1989) in J. Phys. B 22, 3187

    Article  ADS  Google Scholar 

  74. Breuer, H.P., Holthaus, M.‚’Adiabatic processes in the ionization of highly excited hydrogen atoms’ (3rd paper)

    Google Scholar 

  75. Wang, K., Chu, S-I. (1989) ’Dynamics of multiphoton excitation and quantum diffusion in Rydberg atoms’, Phys. Rev. A 39, 1800–1808

    Article  ADS  Google Scholar 

  76. Heller E.J. (1984) ’Bound state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits’, Phys. Rev. Lett. 53, 1515–8

    Article  MathSciNet  ADS  Google Scholar 

  77. O’ConorP.W., Gehlen J.N., Heller E.J. (1987) ’Properties of random superpositions of plane waves’, Phys. Rev. Lett. 58, 1296–9

    Article  ADS  Google Scholar 

  78. Wintgen, D., and Hönig, A. (1989) ’Irregular wave functions of a hydrogen atom in a uniform magnetic field’, Phys. Rev. Lett. 63, 1467–70

    Article  ADS  Google Scholar 

  79. Waterland, R.L., Jian-Min Yuan, Martens, C.C ‚ Gillilan, E., and Reinhardt, W.P. (1989) Phys. Rev. Lett. 61, 2733–6

    Article  ADS  Google Scholar 

  80. Feingold M., Littlejohn R.G., Solina S.B., Pehling J.S. (1990) ’Scars in billiards: The phase space approach’, Phys. Lett. A 146, 199– 203

    Article  MathSciNet  ADS  Google Scholar 

  81. Berry M.V. (1989) ’Quantum scars of classical closed orbits in phase space’, Proc. Roy. Soc. London, A 423, 219–231; and in (1982) “Chaotic behavior of deterministic systems’, G. Iooss, R.H.G. Helleman, and R. Stora (eds.), Proceedings of the Les Houches Summer Institute, North-Holland, Amsterdam, p 172

    ADS  Google Scholar 

  82. Radons, G., Prange, R.E. (1988) ’Wave function at the critical Kolmogorov-ArnoPd-Moser surface’, Phys. Rev. Lett. 61, 1691–4

    Article  MathSciNet  ADS  Google Scholar 

  83. Jensen, R.V., Sanders, M.M., Saraceno, M., Sundaram, B., (1989) Inhibition of quantum transport due to “Scars” of unstable periodic orbits’, Phys. Rev. Lett. 63, 272–5 and preprint NSF-ITP-89–1281 (Yale).

    Article  Google Scholar 

  84. Jensen, R.V., Susskind, S.M., Sanders, M.M. (1991) submitted to Phys. Reports

    Google Scholar 

  85. Jensen, R.V., Sundaram, B.; (1990) ’On the role of “Scars” in the suppression of ionization in intense high-frequency fields’, Phys. Rev. Lett. 65, 1964–7

    Article  ADS  Google Scholar 

  86. Stevens, M.J., and Sundaram, B. (1989) ’Quantal phase space analysis of the driven surface-state electron’, Phys. Rev. A 39, 286–277

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moorman, L. (1991). Microwave Ionization of H Atoms: Experiments in Classical and Quantal Dynamics. In: Hestenes, D., Weingartshofer, A. (eds) The Electron. Fundamental Theories of Physics, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3570-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3570-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5582-6

  • Online ISBN: 978-94-011-3570-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics