Skip to main content

Lecture Notes on: Free-Energy Calculations

  • Chapter
Computer Simulation in Materials Science

Part of the book series: NATO ASI Series ((NSSE,volume 205))

Abstract

Techniques to compute absolute free energies of classical many-body systems are discussed with special emphasis on those techniques that can be used to map the phase diagram of solids and liquids. Recent technical advances in the study of multi-component systems and systems consisting of flexible molecules are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.G. Mouritsen, Computer Studies of Phase Transitions and Critical Phenomena, Springer, Berlin, 1984.

    Book  Google Scholar 

  2. K. Binder, Applications of the Monte Carlo Method in Statistical Physics, Springer, Berlin, 1984.

    Book  MATH  Google Scholar 

  3. W. G. Hoover and F. H. Ree, J. Chem. Phys. 47:4873 (1967).

    Article  ADS  Google Scholar 

  4. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,2nd edition, Academic Press, London, 1986.

    Google Scholar 

  5. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81:3188 (1984).

    Article  ADS  Google Scholar 

  6. D. Frenkel and B. M. Mulder, Mol. Phys. 55:1171 (1985).

    Article  ADS  Google Scholar 

  7. A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A36:2929 (1987).

    ADS  Google Scholar 

  8. D. Frenkel, H. N. W. Lekkerkerker and A. Stroobants, Nature 332:822 (1988).

    Article  ADS  Google Scholar 

  9. E.J.Meijer, D.Frenkel, R.A.LeSar and A.J.C.Ladd, J. Chem. Phys. 92:7570(1990).

    Article  ADS  Google Scholar 

  10. W.G.T.Kranendonk and D.Frenkel, Mol. Phys. 72:679(1991)

    Article  ADS  Google Scholar 

  11. W.G.T.Kranendonk and D.Frenkel, Mol. Phys. 72:699(1991)

    Article  ADS  Google Scholar 

  12. B. Widom, J. Chem. Phys. 39:2808 (1963).

    Article  ADS  Google Scholar 

  13. K .S. Shing, Chem. Phys. Lett. 119:149(1985)

    Article  ADS  Google Scholar 

  14. K .S. Shing,J. Chem. Phys. 85:4633 (1986).

    Article  ADS  Google Scholar 

  15. K .S. Shing and S. T. Chung, J. Phys. Chem. 91:1674 (1987).

    Article  Google Scholar 

  16. P. Sindzingre, G. Ciccotti, C. Massobrio and D. Frenkel, Chem. Phys. Lett. 136:35 (1987).

    Article  ADS  Google Scholar 

  17. D. Frenkel in: Molecular Dynamics Simulations of Statistical Mechanical Systems, Proceedings of the 97th International School of Physics ‘Enrico Fermi’, G. Ciccotti and W. G. Hoover, editors. North-Holland, Amsterdam, 1986, p.151.

    Google Scholar 

  18. J. L. Lebowitz, J. K. Percus and L. Verlet, Phys. Rev. 153:250 (1967).

    Article  ADS  Google Scholar 

  19. P. Sindzingre, C. Massobrio, G. Ciccotti and D. Frenkel, Chemical Physics 129:213(1989)

    Article  ADS  Google Scholar 

  20. J.I.Siepmann, Mol.Phys.70:1145(1990)

    Article  ADS  Google Scholar 

  21. M.N.Rosenbluth and A.W.Rosenbluth, J.Chem. Phys. 23:356(1955)

    Article  Google Scholar 

  22. S.K.Kumar and A.Z.Panagiotopoulos, preprint (1991).

    Google Scholar 

  23. D.Frenkel and B.Smit, to be published.

    Google Scholar 

  24. D.Frenkel, J.Phys. Condensed Matter 2(SA):265(1990)

    ADS  Google Scholar 

  25. G.A.C.M.Mooij and D.Frenkel, Mol. Phys. (in press).

    Google Scholar 

  26. J.I.Siepmann and D.Frenkel, submitted for publication

    Google Scholar 

  27. K. S. Shing and K. E. Gubbins, Mol. Phys. 46, 1109 (1982).

    Article  ADS  Google Scholar 

  28. K. S. Shing and K. E. Gubbins, Mol. Phys. 49, 1121 (1983).

    Article  ADS  Google Scholar 

  29. C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

    Article  ADS  Google Scholar 

  30. G. M. Torrie and J. P. Valleau, J. Comp. Phys. 23:187 (1977)

    Article  ADS  Google Scholar 

  31. D.R.Squire and W.G.Hoover, J.Chem.Phys. 50:701(1969)

    Article  ADS  Google Scholar 

  32. S.W.de Leeuw and M.J.Gillan, J. Phys. C15:5161(1982)

    ADS  Google Scholar 

  33. . G.Jacucci and M.Ronchetti, Solid State Commun.33:35(1980)

    Article  ADS  Google Scholar 

  34. W. W. Wood, J. Chem. Phys. 48:415 (1968).

    Article  ADS  Google Scholar 

  35. I. R. McDonald, Mol. Phys. 23:41 (1972).

    Article  ADS  Google Scholar 

  36. Actually, there is no need to assume a real piston. The systems with volume V and V0-V may both be isolated systems subject to their individual (periodic) boundary conditions. The only constraint that we impose is that the sum of the volumes of the two systems equals V0.

    Google Scholar 

  37. R. Eppenga and D. Frenkel, Mol. Phys. 52:1303 (1984).

    Article  ADS  Google Scholar 

  38. G. E. Norman and V. S. Filinov, High Temp. Res. USSR 7:216 (1969).

    Google Scholar 

  39. D. J. Adams, Mol. Phys. 28:1241 (1974).

    Article  ADS  Google Scholar 

  40. D. J. Adams, Mol. Phys. 29:307 (1975).

    Article  ADS  Google Scholar 

  41. D. J. Adams, Mol. Phys. 32:647 (1976).

    Article  ADS  Google Scholar 

  42. D. J. Adams, Mol. Phys. 37:211 (1979).

    Article  ADS  Google Scholar 

  43. L. A. Rowley, D. Nicholson and N. G. Parsonage, J. Comp. Phys. 17:401 (1975).

    Article  ADS  Google Scholar 

  44. J. Yao, R. A. Greenkorn and K. C. Chao, Mol. Phys. 46:587 (1982).

    Article  ADS  Google Scholar 

  45. M. Mezei, Mol. Phys. 40:901 (1980).

    Article  ADS  Google Scholar 

  46. J. P. Valleau and K. L. Cohen, J. Chem. Phys. 72:3935 (1980).

    Google Scholar 

  47. W. van Meegen and I. Snook, J. Chem. Phys. 73:4656 (1980).

    Article  ADS  Google Scholar 

  48. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.

    MATH  Google Scholar 

  49. T.Çağin and B.M. Pettitt, Mol. Phys. 72:169(1991).

    Article  ADS  Google Scholar 

  50. A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).

    Article  ADS  Google Scholar 

  51. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys. 63:527 (1988).

    Article  ADS  Google Scholar 

  52. A. Z. Panagiotopoulos, Mol. Phys. 62:701 (1987).

    Article  ADS  Google Scholar 

  53. B.Smit, Ph. de Smedt and D.Frenkel, Mol. Phys. 68:931(1989).

    Article  ADS  Google Scholar 

  54. D.A.Kofke and E.D.Glandt, Mol. Phys. 64:1105(1988).

    Article  ADS  Google Scholar 

  55. M.R.Stapleton, D.J.Tildesley and N.Quirke, J.Chem. Phys. 92:4456(1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frenkel, D. (1991). Lecture Notes on: Free-Energy Calculations. In: Meyer, M., Pontikis, V. (eds) Computer Simulation in Materials Science. NATO ASI Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3546-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3546-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5570-3

  • Online ISBN: 978-94-011-3546-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics