Skip to main content

Structural Organization in Self-Assembled Monolayers

  • Chapter
Computer Simulation in Materials Science

Part of the book series: NATO ASI Series ((NSSE,volume 205))

  • 471 Accesses

Abstract

Computer simulation molecular dynamics calculations have been used to investigate the behavior of monolayers of long-chain molecules tethered to various substrates. Specifically, we are interested in quasi-two-dimensional overlayers of long-chain thiols that can be prepared by self-assembly from solution on to well-characterized substrates, such as gold or silver. The eventual aim is to understand the extent to which the underlying substrate can influence the chain packing and the ways in which different polar terminal groups can alter the physical properties of the monolayer. The motivation for this study is that it complements experimental programs currently underway to study organic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Inaba, H. Chibara, S. M. Clarke and R. K. Thomas, Mol Phys., 1991, 72, 109.

    Article  ADS  Google Scholar 

  2. Y. P Joshi, D. J. Tildesley, J. S. Ayres and R. K. Thomas, Mol. Phys., 1988, 65, 991.

    Article  ADS  Google Scholar 

  3. M. Moller and M. L. Klein, J. Chem. Phys., 1989, 90, 196.

    Article  Google Scholar 

  4. J. Z. Larese, Q. M. Zhang, L. Passell, J. M. Hasting, J. R. Dennison and H. Taub, Phys. Rev. B., 1989, 40, 4271.

    Article  ADS  Google Scholar 

  5. A. Alavi, Mol. Phys., 1990, 71, 1173.

    Article  ADS  Google Scholar 

  6. See also, for example, J. Chem. Soc. Faraday Discuss. 80, 1985, and papers therein.

    Google Scholar 

  7. J. Z. Larese, L. Passell, A. D. Heidemann, D. Richter and J. P. Wickstead, Phys. Rev. Lett., 1988, 61, 432.

    Article  ADS  Google Scholar 

  8. P. Rowntree, G. Scoles and J. Xu, J. Chem. Phys., 1990, 92, 3853.

    Article  ADS  Google Scholar 

  9. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Clarendon, Oxford, 1987.

    MATH  Google Scholar 

  10. V. R. Behethanabotla and W. A. Steele, J. Chem. Phys., 1989, 91, 4346.

    Article  ADS  Google Scholar 

  11. S. Nosé and M. L. Klein, Phys. Rev. Lett., 1984, 53, 818

    Article  ADS  Google Scholar 

  12. B. H. Grier, J. Passell, J. Eckert, H. Patterson, D. Richter and R. J. Rollefson, Phys. Rev. Lett.., 1984, 53, 814.

    Article  ADS  Google Scholar 

  13. A. Cheng and W. A. Steele, J. Chem. Phys., 1990, 92, 3859; ibid 3867.

    ADS  Google Scholar 

  14. J. C. Ruiz-Suarez, M. L. Klein, M. A. Moller, P. A. Rowntree, G. Scoles and J. Xu, Phys. Rev. Lett., 1988, 61, 710.

    Article  ADS  Google Scholar 

  15. S. Leggetter and D. J. Tildesley, Mol. Phys., 1989, 68, 519.

    Article  ADS  Google Scholar 

  16. G. Cardini, J. Bareman and M. L. Klein, Chem. Phys. Lett., 1988, 145, 493

    Article  ADS  Google Scholar 

  17. J. P. Bareman, G. Cardini and M. L. Klein, in Atomic Scale Calculations in Materials Science, Eds. J. Tersoff, D. Vanderbilt and V. Vitek, MRS Symposium Series, 1989, 141, 411.

    Google Scholar 

  18. J. Harris and S.A. Rice, J. Chem. Phys., 1988, 89, 5898.

    Article  ADS  Google Scholar 

  19. M. Moller, D. J. Tildesley and N. Quirke, 1990, J. Chem. Phys.

    Google Scholar 

  20. J. Hautman and M. L. Klein, J. Chem. Phys., 1989, 91, 4994; J. Chem. Phys., 1990 93 7483.

    Article  ADS  Google Scholar 

  21. A. Ulman, J. E. Eilers, N. Tillman, Langmuir, 1989, 5, 1147.

    Article  Google Scholar 

  22. C. D. Bain, E. B.Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides and R. G. Nuzzo, J. Am. Chem. Soc, 1989, 111, 321.

    Article  Google Scholar 

  23. J. D. Swalen, D. L. Allara, J. D. Andrade, E.A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne and H. Yu, Langmuir, 1987, 3, 932.

    Article  Google Scholar 

  24. J. Sagiv, J. Am. Chem. Soc, 1980, 102, 92.

    Article  Google Scholar 

  25. R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc, 1983, 105, 4481.

    Article  Google Scholar 

  26. C. D. Bain and G. M. Whitesides, Angew. Chem. Int. Ed. Engl., 1989, 28, 506.

    Article  Google Scholar 

  27. A. Ulman, 1990, Angew. Chem. Int. Ed. Engl. Adv. Mat.

    Google Scholar 

  28. C. Pale-Grosdemange, E. S. Simon and G. M. Whitesides, 1990, preprint; for related studies on Langmuir-Blodgett systems, see S. M. Amador, J. M. Pachence, J. P. McCauley, Jr., A. B. Smith, P. L. Dutton, R. Fischetti and J. K. Blasie, Proc. Mat. Res. Soc, 1989, 177, 393.

    Google Scholar 

  29. S. R. Wasserman, H. Biebuyck and G. M. Whitesides, J. Mater. Res., 1989, 4, 886.

    Article  ADS  Google Scholar 

  30. L. S. Strong and G. M. Whitesides, Langmuir, 1988, 4, 546.

    Article  Google Scholar 

  31. N. Tillman, A. Ulman and J. F. Elman, Langmuir, 1989, 5, 1020.

    Article  Google Scholar 

  32. A. Ulman, C. S. Willand, W. Kohler, D. R. Robello, D. J. Williams and L. Handley, J. Am. Chem. Soc, in press.

    Google Scholar 

  33. S. M. Stole and M. D. Porter, Langmuir, 1990, 6, 1199.

    Article  Google Scholar 

  34. R. G. Nuzzo, E. M. Korenic and L. H. Dubois, J. Chem. Phys., 1990, 93, 767.

    Article  ADS  Google Scholar 

  35. N. Balachander, C. N. Sukenik, Tetrahedron Lett., 1989, 29, 5593.

    Article  Google Scholar 

  36. S. D. Evans, R. Sharma and A. Ulman, Langmuir, 1991, 7, 156.

    Article  Google Scholar 

  37. S. D. Evans and A. Ulman, Chem. Phys. Lett., 1990, 170, 462.

    Article  ADS  Google Scholar 

  38. R. G. Nuzzo, L. H. Dubois and D. L. Allara, J. Am. Chem. Soc., 1990, 112, 558

    Article  Google Scholar 

  39. L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, J. Am. Chem. Soc, 1990, 112, 570.

    Article  Google Scholar 

  40. P. E. Laibinis, J. J. Hickman, M. S. Wrighton, G. M. Whitesides, Science, 1989, 245, 845.

    Article  ADS  Google Scholar 

  41. N. Tillman, A. Ulman and T. L. Penner, Langmuir, 1989, 5, 101.

    Article  Google Scholar 

  42. N. Tillman, A. Ulman, J. S. Schildkraut and T. L. Penner, J. Am. Chem. Soc, 1988, 110, 6136.

    Article  Google Scholar 

  43. I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides and J. D. Axe, Phys. Rev. B, 1990, 41, 1111.

    Article  ADS  Google Scholar 

  44. S. R. Wasserman, Y. T. Tao and G. M. Whitesides, Langmuir, 1989, 5, 1074.

    Article  Google Scholar 

  45. G. M. Whitesides, P. E. Laibinis, Langmuir, 1990, 6, 87.

    Article  Google Scholar 

  46. M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, J. Am. Chem. Soc, 1987, 109, 3559.

    Article  Google Scholar 

  47. R. G. Nuzzo, F. A. Fusco, and D. L. Allara, J. Am. Chem. Soc, 1987, 109, 2358

    Article  Google Scholar 

  48. L. H. Dubois, B. R. Zegarski and R. G. Nuzzo, Proc. NatAcad. Sci., 1987, 84,4739

    Article  ADS  Google Scholar 

  49. R. G. Nuzzo, B. R. Zegarski and L. H. Dubois, J. Am. Chem. Soc, 1987, 109, 733; 1988, 110, 6560; 1988, 110, 3665.

    Article  Google Scholar 

  50. E. B.Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara and M. D. Porter, Langmuir, 1988, 4, 365.

    Article  Google Scholar 

  51. C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc, 1988, 110, 6560

    Article  Google Scholar 

  52. C. D. Bain and G. M. Whitesides, Science, 1988, 240, 62

    Article  ADS  Google Scholar 

  53. C. D. Bain, H. A. Biebuyck and G. M. Whitesides, Langmuir, 1989, 5, 723

    Article  Google Scholar 

  54. C. D. Bain, J. Evall and G. M. Whitesides, J. Am. Chem. Soc, 1989, 111, 7155.

    Article  Google Scholar 

  55. C. E. D. Chidsey, G.-Y. Liu, P. Rowntree, and G. Scoles, J. Chem. Phys., 1989, 91, 4421, and private communication.

    Article  ADS  Google Scholar 

  56. S. H. Chen and C. W. Frank, Langmuir, 1989, 5, 978.

    Article  Google Scholar 

  57. S. R. Holmes-Farley and G. M. Whitesides, Langmuir, 1987, 3, 62.

    Article  Google Scholar 

  58. J.-P. Ryckaert and M. L. Klein, J. Chem. Phys., 1986, 85, 1613

    Article  ADS  Google Scholar 

  59. J.-P. Ryckaert, M. L. Klein, and I. R. McDonald, Phys. Rev. Lett., 1987, 58, 698

    Article  ADS  Google Scholar 

  60. J.-P. Ryckaert, I. R. McDonald, and M. L. Klein, Mol. Phys., 1989, 67, 957.

    Article  ADS  Google Scholar 

  61. J. P. Bareman, G. Cardini and M. L. Klein, Phys. Rev. Lett., 1988, 60, 2152...

    Article  ADS  Google Scholar 

  62. B. Lin, M. C. Shih and T. M. Bohanon, Phys. Rev. Lett., 1990, 65, 191

    Article  ADS  Google Scholar 

  63. J. V. Selinger and D. R. Nelson, Phys. Rev. A, 1989, 39, 3135.

    Article  ADS  Google Scholar 

  64. A. Ulman, private communication; Y. Shnidman, J. E. Eilers, S. D. Evans and A. Ulman, to be published.

    Google Scholar 

  65. J.-P. Ryckaert and A. Bellemans, J. Chem. Soc. Faraday Discuss., 1978, 66, 95.

    Article  Google Scholar 

  66. P. van der Ploeg and H. J. C. Berendsen, J. Chem. Phys., 1982, 76, 3271.

    Article  ADS  Google Scholar 

  67. W. L. Jorgensen, J. Phys. Chem., 1986, 90, 1277, 6379.

    Google Scholar 

  68. W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc, 1988, 110, 1657.

    Article  Google Scholar 

  69. J. Hautman and M. L. Klein, Molecular Physics, 1991, to be published.

    Google Scholar 

  70. S. Nosé, Mol. Phys., 1984, 52, 255; J. Chem. Phys., 1984, 81, 511.

    Article  ADS  Google Scholar 

  71. J. P. Bareman and M. L. Klein, J. Phys. Chem., 1990, 94, 5202.

    Article  Google Scholar 

  72. S. Toxvaerd, 1990, J. Chem. Phys. 93, 4290.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hautman, J., Klein, M.L. (1991). Structural Organization in Self-Assembled Monolayers. In: Meyer, M., Pontikis, V. (eds) Computer Simulation in Materials Science. NATO ASI Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3546-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3546-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5570-3

  • Online ISBN: 978-94-011-3546-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics