Skip to main content

The Pseudopotential Approach to the Interatomic Interaction Problem

  • Chapter
Computer Simulation in Materials Science

Part of the book series: NATO ASI Series ((NSSE,volume 205))

  • 482 Accesses

Abstract

The main concepts of the pseudopotential theory are first discussed (equivalency, core states elimination, orthogonalization hole, transferability). The perturbative approach is used to derive the (sp-bonded) metal structural energy. The significance and limitations of the resulting volume plus pair force expression are next discussed. Finally, a few non perturbative approaches are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drude, P. (1900) “Electronic theory of metals”, Ann. Physik 1, 566–578.

    Article  ADS  MATH  Google Scholar 

  2. Phillips, J.C. and Kleinman, L. (1959) “New method for calculating wave function in crystals and molecules”, Phys. Rev. 116, 287–293.

    Article  ADS  MATH  Google Scholar 

  3. Herring, C. (1940) “Orthogonalized plane waves method for band structure calculation”, Phys. Rev. 126, 1169–1182.

    Article  ADS  Google Scholar 

  4. [43 Harrison, W. A. (1967) Pseudopotentials in the Theory of Metals, Benjamin, New-York.

    Google Scholar 

  5. Ehrenreich, H. and Cohen, M.H. (1959) “Selfconsistent field approach to the many electrons problem”, Phys. Rev. 115, 786–790.90.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Abarenkov, I. and Heine, V. (1965) “The model potential for positive ions”, Phil. Mag. 12, 529–537.

    Article  ADS  Google Scholar 

  7. Shaw, R.W. (1968) “Optimum form of a modified Heine-Abarenkov model potential”, Phys. Rev. 174, 769–781.

    Article  ADS  Google Scholar 

  8. Ashcroft, N.W. (1966) “Electron-ion pseudopotentials in metals”, Phys. Letters 23, 48–49.

    Article  ADS  Google Scholar 

  9. Hamann, D.R., Schlüter, M. and Chiang, C. (1979) “Norm-conserving pseudopotentials”, Phys. Rev. Lett. 43, 1494–1497.

    Article  ADS  Google Scholar 

  10. Cohen, M. L. and Heine, V. (1970) “The fitting of pseudopotentials to experimental data”, Solid State Physics 24, Academic, New-York, pp. 38–249.

    Google Scholar 

  11. Heine, V. and Weaire, D. (1970) “Pseudopotential theory of cohesion and structure”, Solid State Physics 24, Academic, New-York, pp. 250–464.

    Google Scholar 

  12. Hohenberg, P. and Kohn, W. (1964) “Inhomogeneous electron gas”, Phys. Rev. 136, B864–871.

    Article  MathSciNet  ADS  Google Scholar 

  13. Kohn, W. and Sham, L.J. (1965) “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140, A1133–1138.

    Article  MathSciNet  ADS  Google Scholar 

  14. Dagens, L. (1977) “The resonant model potential: II. Total energy : application to Cu, Ag, Au and Ca”, J. Phys. F: Metal Phys. 7, 1167.

    Article  ADS  Google Scholar 

  15. Moriarty, J.A. (1972) “Total energy of Copper, Silver and Gold”, Phys. Rev. 6, 1239–1252.

    ADS  Google Scholar 

  16. Moriarty, J.A. (1974) “Zero order pseudoatoms and the generalized pseudopotential theory”, Phys. Rev. 10, 30753091.

    Google Scholar 

  17. Carr, R. and Parrinello, M. (1985) “Uniform approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett. 55, 2471–2474.

    Article  ADS  Google Scholar 

  18. Shaw, R.W. and Harrison, W.A. (1967) “Reformulation of the screened Heine-Abarenkov model potential”, Phys. Rev. 163, 604–611.

    Article  ADS  Google Scholar 

  19. Austin, B.J., Heine, V. and Sham, L.J. (1962) “General theory of pseudopotentials”, Phys. Rev. 127, 267–282.

    Article  ADS  Google Scholar 

  20. Natapoff, M. (1976) “Calculation of the atomic radius”, J. Phys. Chem. Solids 37, 59–62.

    Article  ADS  Google Scholar 

  21. Natapoff, M. (1978) “Pseudopotentials and the radius of the atomic core”, J. Phys. Chem. Solids 39, 1119–1123.

    Article  ADS  Google Scholar 

  22. Heine, V. and Abarenkov, I. (1964). “The model potential method”, Phil. Mag. 9, 451–460.

    Article  ADS  Google Scholar 

  23. Hamann, D.R. (1989) “Generalized norm conserving pseudopotentials”, Phys. Rev. B 40, 2980–2987.

    Article  ADS  Google Scholar 

  24. Ziman, J.M. (1964) “The method of neutral pseudo-atoms in the theory of metals”, Adv. Phys. 13, 89–138.

    Article  ADS  Google Scholar 

  25. Dagens, L. (1972) “The ion-electron-ion interaction according to the neutral atom model”, J. Phys. C: Solid State Phys. 5, L213–215.

    Article  ADS  Google Scholar 

  26. Dagens, L. (1972) “A selfconsistent calculation of the neutral atom density according to the neutral atom model”, J. Phys. C : Solid State Phys. 5, 2333–2344.

    Article  ADS  Google Scholar 

  27. Dagens, L. (1973) “Application de la méthode de l’atome neutre au calcul de l’énergie des métaux simples”, J. Physique 34, 879–889.

    Article  Google Scholar 

  28. Norskov, J.K. and Lang, N.D. (1980) “Effective medium theory of chemical binding”, Phys. Rev. B 21, 2131-2136.Puska, M.J., Nieminen, R.N. and Manninen, M. (1981) “Atoms embedded in a electron gas : immersion energy”, Phys. Rev. B 24, 3037-3047.Jacobsen, K.W., Norskov, J.K. and Puska, M. J. (1987) “Interatomic interactions in the effective-medium theory”, Phys. Rev. B35, 7423-7442.

    Article  ADS  Google Scholar 

  29. Puska, M.J., Nieminen, R.N. and Manninen, M. (1981) “Atoms embedded in a electron gas : immersion energy”, Phys. Rev. B 24, 3037–3047.

    Article  ADS  Google Scholar 

  30. Jacobsen, K.W., Norskov, J.K. and Puska, M. J. (1987) “Interatomic interactions in the effective-medium theory”, Phys. Rev. B35, 7423–7442.

    Article  ADS  Google Scholar 

  31. Ceperley, D.M. and Adler, B. J. (1980) “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett. 45, 566–569.

    Article  ADS  Google Scholar 

  32. Perdew, J. and Zunger, A. (1981) “Self-interaction correction to the density-functional approximation for many electron systems”, Phys. Rev. 23, 5048.

    Article  ADS  Google Scholar 

  33. Geldart, D.J.W. and Taylor, R. (1970) “Wave-number dependence of the static screening function. I.”, Can. J. Phys. 48, 155–165.

    Article  ADS  Google Scholar 

  34. Geldart, D.J.W. and Taylor, R. (1970) “Wave-number dependence of the static screening function. II.”, Can. J. Phys. 48, 167–181.

    Article  ADS  Google Scholar 

  35. Dagens, L. (1971) “Un calcul variationnel de 1’énergie d’échange d’un gaz d’electrons”, J. Physique 32, 719–728.

    Article  Google Scholar 

  36. Brovman, E.G. and Kagan, Y (1970) “Long wave phonons in metals”, Sov. Phys.-JETP 30, 721–727.

    ADS  Google Scholar 

  37. Brovman, E.G., Kagan, Y. and Kholas, A. (1970) “The compressibility problem and violation of the Cauchy relation”, Sov. Phys.-JETP 30, 883–888.

    ADS  Google Scholar 

  38. Pettifor, D. C. and Ward, M. A. (1984) “An analytic pair potential for simple metals”, Solid State Com. 29, 291–294.

    Article  Google Scholar 

  39. Dagens, L. (1974) “The effect of pressure on the pair potential for liquid sodium”, Phys. Stat. Sol. (b) 62, K109–113.

    Article  ADS  Google Scholar 

  40. Rosenfeld, A.M. and Stott, M.J. (1987) “Density dependent potential and the compressibility problem”, J. Phys. F: Metal Phys. 17, 605–627.

    Article  ADS  Google Scholar 

  41. Carlsson, A.E. and Ashcroft, N.W. (1983) “Pair potentials from band theory : vacancy formation energies”, Phys. Rev. B 27, 2101-2110.

    Google Scholar 

  42. Carlsson, A.E.(1990) “Beyond pair potentials in transition metals”, Solid State physics 43, Academic, New-York, pp. 1–91.

    Google Scholar 

  43. Dagens, L. (1984) “Effective interatomic forces in liquid metals”, Phys. Letters 101A, 283–285.

    ADS  Google Scholar 

  44. Dagens, L. (1986) “Effective interatomic potentials in strong scattering open shell metals”, J. Phys. Ft Metal Phys. 16, 1705–1724.

    Article  ADS  Google Scholar 

  45. Finnis, M.W. and Sinclair, J.E. (1984) “A simple empirical N-body potential for transition Metal”, Phil. Mag. A 50, 45–55.

    Article  ADS  Google Scholar 

  46. Daw, M.S. and Baskes, M.I. (1983) “Semi empirical quantum mechanical calculation of hydrogen embrittement in metals”, Phys. Rev. Lett. 50, 1285–1288.

    Article  ADS  Google Scholar 

  47. Daw, M.S. and Baskes, M.I. (1984) “Embedded atom method : derivation and application to defects in metals”, Phys. Rev. B 29, 6443–6453.

    Article  ADS  Google Scholar 

  48. Moriarty, J.A. (1977) “Density-functional formulation of the generalized pseudopotential theory”, Phys. Rev. B 16, 2537–2555.

    Article  ADS  Google Scholar 

  49. Moriarty, J.A. (1990) “Multi-ion interatomic potentials in transition metals”, Phys. Rev. B 42, 1609–1628.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dagens, L. (1991). The Pseudopotential Approach to the Interatomic Interaction Problem. In: Meyer, M., Pontikis, V. (eds) Computer Simulation in Materials Science. NATO ASI Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3546-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3546-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5570-3

  • Online ISBN: 978-94-011-3546-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics