Skip to main content

Physological Properties Of Azospirillum Brasilense Involved In Root Growth Promotion

  • Chapter
Nitrogen Fixation

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 48))

Abstract

Free living Azospirillum, and other soil bacteria exert beneficial effects on plant growth and yield of many crops of agronomic importance, such as grain and forage grasses, legumes and tomatoes [16,39].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Salam, M.S. and Klingmuller, W. (1987) ‘Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants’, Molecular General Genetics 210, 165–170.

    Article  CAS  Google Scholar 

  2. Baker, C.J., Atkinson, M.M. and Collmer, A. (1987) ‘Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in Tobacco’, Phytopathology 77, 1268–1272.

    Article  CAS  Google Scholar 

  3. Bar, T. and Okon, Y. (1990) ‘Indole-3-acetic acid synthesis in Azospirillum brasilense Sp7’, (submitted).

    Google Scholar 

  4. Bar, T. and Okon, Y. (1990) ‘Pathways for indole-3-acetic acid production by Azospirillum brasilense Sp7 and their possible co-regulation with nitrogen fixation,’ (submitted).

    Google Scholar 

  5. Bashan, Y. and Levanony, H. (1988) ‘Active attachment of Azospirillum brasilense Cd to quartz sand to a light-textured soil by protein bridging’, J. General Microbiology 134, 2269–2279.

    CAS  Google Scholar 

  6. Boyer, H.W. and Roulland-Dussoix, D. (1969) ‘A complementation analysis of the restriction and modification of DNA in E. coli, J. Molecular Biology 41, 459–468.

    Google Scholar 

  7. Bouzouklian, H., Fogher, C. and Eimerich, C. (1986) ‘Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7’, Annals Institut Pasteur/Microbiologie 137B, 3–18.

    Article  Google Scholar 

  8. de Bruijn, F.J. and Lupski, J. R. (1984) ‘The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids — a review’, Gene 27, 131–139.

    Article  PubMed  Google Scholar 

  9. Choma, R.R., Russa, R., Mayer, H. and Lorkiewicz, L. (1987) ‘Chemical analysis of Azospirillum lipopolysaccharides’, Archives of Microbiology 146, 341–345.

    Article  CAS  Google Scholar 

  10. Cohen, J.D. and Bialek, K. (1984) ‘The biosynthesis of indole-3-acetic acid in higher plants’, in A. Crozier and J.R. Hillman (eds.), The Biosynthesis and Metabolism of Plant Hormones (Soc. Exp. Biol. Sem. Ser. 23 ), Cambridge University Press, Cambridge, pp. 165–181.

    Google Scholar 

  11. Crozier, A., Arruda, P., Jasmin, J.M., Monterio, A.M. and Sandberg, G. (1988) ‘Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense’, Applied Environmental Microbiology 54, 2833–2837.

    CAS  Google Scholar 

  12. Dawes, E. A. (1986) ‘Microbial energy reserve compounds’, in E.A. Dawes (ed.), Microbial Energetics, Blackie, Glasgow and London, pp. 145–165.

    Google Scholar 

  13. De Francesco, R., Zanetti, G., Barbieri, P. and Galli, E. (1985) ‘Auxin production by Azospirillum brasilense under different culture conditions’, in W. Klingmuller, (ed.), Azospirillum III: Genetics, Physiology, Ecology, Springer-Verlag, Berlin, pp. 109–115.

    Google Scholar 

  14. De Francesco, R., Zanetti, G., Barbieri, P. and Galli, E. (1985) ‘Auxin production by Azospirillum brasilense under different culture conditions’, in W. Klingmuller, (ed.), Azospirillum III: Genetics, Physiology, Ecology, Springer-Verlag, Berlin, pp. 109–115.

    Google Scholar 

  15. Del Gallo, M., Negi, M. and Neyra, C.A. (1989) ‘Calcoflour and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum’, J. Bacteriology 171, 3504–3510.

    Google Scholar 

  16. Dobereiner, J. and Pedrosa, F.O. (1987) ‘Nitrogen-fixing bacteria in non-leguminous crop plants’, Science Tech. Publishers/Springer-Verlag, Madison, WI.

    Google Scholar 

  17. Elmerich, C., Bouzouklian, H., Vieille, C., Fogher, C., Perroud, B., Perrin, A. and Vanderleyden, J. (1987) ‘Azospirillum: Genetics of nitrogen fixation and interaction with plants’, Phil. Transactions of the Royal Society London (B) 317, 183–192.

    Article  CAS  Google Scholar 

  18. Elmerich, C. and Franche, C. (1982) ‘Azospirillum genetics:plasmids, bacteriophages and chromosome mobilization’, in W. Klingmuller (ed.), Azospirillum Genetics, Physiology and Ecology, Birkhauser, Basel, pp. 9–17.

    Google Scholar 

  19. Elmerich, C. and Franche, C. (1982) ‘Azospirillum genetics:plasmids, bacteriophages and chromosome mobilization’, in W. Klingmuller (ed.), Azospirillum Genetics, Physiology and Ecology, Birkhauser, Basel, pp. 9–17.

    Google Scholar 

  20. Fallik, E., Okon, Y., Epstein, E., Goldman, A. and Fischer, M. (1989) ‘Identification and quantification of IAA and IBA in Azospirillum brasilense -inoculated maize roots’, Soil Biology & Biochemistry 21, 147–153.

    Article  CAS  Google Scholar 

  21. Fallik, E., Okon, Y. and Fischer, M. (1988) ‘Growth response of maize to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation’, Soil Biology & Biochemistry 20, 45–49.

    Article  Google Scholar 

  22. Fallik, E., Okon, Y. and Fischer, M. (1988) ‘The effect of Azospirillum brasilense inoculation on metabolic enzyme activity in maize root seedlings’, Symbiosis 6, 17–28.

    Google Scholar 

  23. Figurski, D.H. and Helinski, D.R. (1979) ‘Replication of an origin-containing derivative of plasmids RK2 dependent on a plasmid function provided in trans’, Proceedings of the National Academy of Science, USA 76, 1648–1652.

    Article  CAS  Google Scholar 

  24. Gafny, R., Okon, Y., Kapulnik, Y. and Fischer, M. (1986) ‘Adsorption of Azospirillum brasilense to corn roots’. Soil Biology & Biochemistry 18, 69–76.

    Google Scholar 

  25. Grossowicz, N. and Saheb, K. (1990) ‘A specific inhibition of Legionella pneumophila growth by the auxins’, in Annual Meeting of the Israel Society for Microbiology, Jerusalem, Hebrew University of Jerusalem Publication, p. 69.

    Google Scholar 

  26. Hadas, R. and Okon, Y. (1987) ‘Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings’, Biology & Fertility of Soils 5, 241–247.

    Article  Google Scholar 

  27. Hartmann, A. (1989) ‘Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp.’, in F.A. Skinner, R. Boddey and I. Fendrik (eds.), Nitrogen Fixation with Non-Legumes, Kluwer Academic Publishers, Dordrecht, pp. 123–136.

    Chapter  Google Scholar 

  28. Hartmann, A. and Burris, R.H. (1987) ‘Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum’, J. Bacteriology 169, 944–948.

    CAS  Google Scholar 

  29. Hartmann, A., Fu, H. and Burris, R. (1986) ‘Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp.’, J. General Microbiology 165, 864–870.

    CAS  Google Scholar 

  30. Hartmann, A., Fu, H. and Burris, R. (1988) ‘Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp.’, Applied and Environmental Microbiology 54, 87–93.

    PubMed  CAS  Google Scholar 

  31. Hartmann, A., Singh, M. and Klingmuller, W. (1983) ‘Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid’, Canadian Journal of Microbiology 29, 916–923.

    Article  CAS  Google Scholar 

  32. Hutcheson, S.W. and Kosuge, T. (1985) ‘Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv. savastanoi. Purification and properties of trypthophan 2-monooxygenase’, J. Biological Chemistry 260, 6281–6287.

    CAS  Google Scholar 

  33. Hynes, M.F., Quandt, J., O’Connell, M.P. and Puhler, A. (1989) ‘Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene’, Gene 78, 111–120.

    Article  PubMed  CAS  Google Scholar 

  34. Kerr, A. (1987) ‘The impact of molecular genetics on plant pathology’, Annual Review of Phytopathology 25, 87–110.

    Article  CAS  Google Scholar 

  35. Kosuge, T. and Sanger, M. (1985) ‘Indoleacetic acid, its synthesis and regulation: a basis for tumorigenicity in plant diseases’, Recent Advances in Phytochemistry 20, 148–161.

    Google Scholar 

  36. Madi, L. and Henis, Y. (1989) ‘Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion’, Plant and Soil 115, 89–98.

    Article  Google Scholar 

  37. Madi, L., Kessel, M., Sadovnik, E. and Henis, Y. (1988) ‘Electron microscopic studies of aggregation and pellicle formation in Azospirillum spp.’, Plant and Soil 109, 115–121.

    Article  Google Scholar 

  38. Nur, I., Steinitz, Y.L., Okon, Y. and Henis, Y. (1981) ‘Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum’, J. General Microbiology 123, 27–32.

    Google Scholar 

  39. Okon, Y. (1985) ‘Azospirillum as a potential inoculant for agriculture’, Trends in Biotechnology 3, 223–228.

    Article  Google Scholar 

  40. Okon, Y., Fallik, E., Sarig, S., Yahalom, E. and Tal, S. (1988) ‘Plant growth promoting effects of Azospirillum’, in H. Bothe, F. de Bruijn and W.E. Newton (eds.), Nitrogen Fixation: Hundred Years After, Gustav Fischer, Stuttgart, New York, pp. 741–746.

    Google Scholar 

  41. Patriquin, D.G., Dobereiner, J. and Jain, D.K. (1983) ‘Sites and processes of association between diazotrophs and grasses’, Canadian Journal of Microbiology 29, 900–915.

    Article  Google Scholar 

  42. Peoples, O.P. and Sinskey, A.J. (1989) ‘Fine structural analysis of the Zooglea ramigera phbA-phbB locus encoding _β-kethothiolase and acetoacetyl CoA reductase nucleotide sequence of phbB’, Molecular Microbiology 3, 349–357.

    Article  PubMed  CAS  Google Scholar 

  43. Peoples, O.P. and Sinskey, A.J. (1989) ‘Poly-β-hydroxybutyrate biosynthesis in Alicaligenes eutrophus Hlb’, J. Biological Chemistry 264, 5293–5297.

    Google Scholar 

  44. Ruckdaschel, E., Kittell, B.L., Helinski, D.R. and Klingmuller, W. (1988) ‘Aromatic amino acid aminotransferases of Azospirillum lipoferum and their possible involvement in IAA biosynthesis’, in W. Klingmuller (ed.), Azospirillum IV: Genetics, Physiology, Ecology, Springer-Verlag, Berlin, pp. 49–53.

    Google Scholar 

  45. Sadisavan, L. and Neyra, C.A. (1985) ‘Flocculation in Azospirillum brasilense and Azospirillum lipoferum: Exopolysaccharides cyst formation’, J. Bacteriology 163, 716–723.

    Google Scholar 

  46. Sarig, S., Blum, A. and Okon, Y. (1988) ‘Improvement of the water status and yield of field-grown sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense’, J. Agricultural Science Cambridge 110, 271–277.

    Article  Google Scholar 

  47. Schubert, P., Steinbuchel, A. and Schlegel, H.G. (1988) ‘Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli’, J. Bacteriology 170, 5837–5847.

    Google Scholar 

  48. Sekine, M., Watanabe, K. and Syono, K. (1989) ‘Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum’, J. Bacteriology 171, 1718–1724.

    CAS  Google Scholar 

  49. Simon, R. (1984) ‘High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon’, Molecular and General Genetics 196, 413–420.

    Article  PubMed  CAS  Google Scholar 

  50. Singh, M. and Klingmuller, W. (1988) ‘A Tn5 induced nifA like mutant of Azospirillum brasilense’, in W. Klingmuller (ed.), Azospirillum IV: Genetics, Physiology, Ecology, Springer-Verlag, Berlin, pp. 26–31.

    Google Scholar 

  51. Slater, C.S., Voige, W.H. and Dennis, D.D. (1988) ‘Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate pathway’, J. Bacteriology 170, 4431–4436.

    CAS  Google Scholar 

  52. Sumner, M.E. (1990) ‘Crop responses to Azospirillum inoculation’, Advances in Soil Science 12, 53–123.

    Article  Google Scholar 

  53. Tal, S. and Okon, Y. (1985) ‘Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd’, Canadian Journal of Microbiology 31, 608–613.

    Article  CAS  Google Scholar 

  54. Tal, S., Smirnoff, F. and Okon, Y. (1990) ‘Purification and characterization of poly-β-hydroxybutyrate in Azospirillum brasilense’, J. General Microbiology 136, 645–649.

    CAS  Google Scholar 

  55. Tal, S., Smirnoff, P. and Okon, Y. (1990) ‘The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation’, J. General Microbiology 136, 1191–1196.

    CAS  Google Scholar 

  56. Tien, T.M., Gaskins, M.H. and Hubbell, D.M. (1979) ‘Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.)’, Applied and Environmental Microbiology 37, 1016–1024.

    PubMed  CAS  Google Scholar 

  57. Vieille, C., Onyeocha, I., Galimand, M. and Elmerich, C. (1989) ‘Homology between plasmids of Azospirillum brasilense and Azospirillum lipoferum’, in F.A. Skinner, R. Boddey and I. Fendrik (eds.), Nitrogen Fixation with Non-Legumes, Kluwer Academic Publishers, Dordrecht, pp. 165–172.

    Chapter  Google Scholar 

  58. Yamada, T., Palm, C. J., Brooks, B. and Kosuge, T. (1985) ‘Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA’, Proceedings of the National Academy of Sciences, USA 82, 6522–6526.

    Article  CAS  Google Scholar 

  59. Yagoda-Shagam, J., Barton, L.L., Reed, W.P. and Chiovetti, R. (1988) ‘Fluorescein isothiocyanate-labeled lectin analysis of the surface of nitrogen fixing bacterium Azospirillum brasilense by flow cytometry’, Applied and Environmental Microbiology 54, 1831–1837.

    PubMed  CAS  Google Scholar 

  60. Yagoda-Shagam, J., Barton, L.L., Reed, W.P. and Chiovetti, R. (1988) ‘Fluorescein isothiocyanate-labeled lectin analysis of the surface of nitrogen fixing bacterium Azospirillum brasilense by flow cytometry’, Applied and Environmental Microbiology 54, 1831–1837.

    PubMed  CAS  Google Scholar 

  61. Zimmer, W. and Bothe, H. (1988) ‘The phytohormonal interaction between Azospirillum and wheat’, Plant and Soil 110, 239–247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Okon, Y., Bar, T., Tal, S., Zaady, E. (1991). Physological Properties Of Azospirillum Brasilense Involved In Root Growth Promotion. In: Polsinelli, M., Materassi, R., Vincenzini, M. (eds) Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3486-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3486-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5541-3

  • Online ISBN: 978-94-011-3486-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics