Skip to main content

Pharmacological Modification of Platelet-Derived Cyclooxygenase Product Formation and Its Consequences for Platelet-Vessel Wall Interactions

  • Chapter
Antithrombotics

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 126))

  • 35 Accesses

Abstract

Platelet-derived cyclooxygenase products are intimately involved in two types of local platelet-vessel wall interactions: Regulation of hemostasis and control of vessel tone. This paper reviews the possible theoretical and clinical benefits of selective pharmacological interference with platelet-derived cyclooxygenase products by thromboxane synthase inhibitors, blockers of PGH2/TXA2 receptors and combined-mode compounds in comparison with acetylsalicylic acid (aspirin). It is concluded that low-dose aspirin is safe and effective to reduce the thromboembolic risk in high-risk cardiovascular patients. However, the low selectivity of the compound for different cyclooxygenases and the high sensitivity of the platelet enzyme might result in suppressed vascular PGI2 formation. Agents, interfering more selectively with thromboxane formation and/or action, do not suppress vascular PGI2 generation but usually are reversible-type antagonists with limited clinical experience. Fresh insights into transcellular precursor exchange and the regulation and function of thromboxane receptors might result in the development of new promising compounds in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai, F. and Schrör, K. (1987) ‘Different effects of thromboxane synthetase inhibition on PGI2 and PGE2 synthesis in human vascular tissue bathed in clotting blood’, in H. Sinzinger and K. Schrör (eds.), Prostaglandins in Clinical Research, Alan R. Liss Inc., New York, pp. 259–264.

    Google Scholar 

  2. Ashton, J., Schmitz, J., Campbell, W., Ogletree, M., Raheja, S., Taylor, A., FitzGerald, C., Buja, L., and Willerson, J.T. (1986) ‘Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor antagonists’, Circ. Res. 59, 568–578.

    Article  PubMed  CAS  Google Scholar 

  3. Bertele, G., Mussoni, V., Pintucci, G., del Rosso, G., Romano, C., de Gaetano, G., and Libretti, A. (1989) ‘The inhibitory effect of aspirin on fibrinolysis is reversed by iloprost, a prostacyclin-analogue, Thromb. Haemostasis 61, 286–288.

    CAS  Google Scholar 

  4. Braun, M. and Schrör, K. (1990) ‘Bay U 3405 inhibits cerebral vasospasm induced by authentic thromboxane A2’, Stroke 21 (Suppl IV), 152–154.

    Google Scholar 

  5. Brewster, A. G., Braun, G. R., Jessup, R., Smithers, M. N. J., and Stocker, A. (1990) ‘1,3-dioxane derivatives possessing potent thromboxane A2 receptor antagonism and thromboxane A2 synthase inhibition’, Proc. 7th Intern. Conf. Prostagl., p.178

    Google Scholar 

  6. Brezinski, M. E., Yanagisawa, A., Darius, H., and Lefer, A. M. (1985) ‘Anti-ischemic actions of a new thromboxane receptor antagonist during acute myocardial ischemia in cats’, Am. Heart. J. 110, 1161–1167.

    Article  PubMed  CAS  Google Scholar 

  7. Bush, L. R. and Smith III, E. F. (1987) ‘Comparative and combined effects of U-63557A, a TxA2 synthetase inhibitor, and BM 13.177, a TxA2 receptor antagonist, on cyclic flow reductions in stenosed canine coronary arteries’, Fed. Proc. 46, 1316.

    Google Scholar 

  8. Busse, R., Lückhoff, A., and Bassenge, E. (1987) ‘Endothelium-derived relaxant factor inhibits platelet activation’, NaunynSchmiedeberg’s Arch. Pharmacol. 336, 566–571.

    CAS  Google Scholar 

  9. Carmo, L. G., Hatmi, M., Rotilio, D., and Vargaftig, B. B. (1985) ‘Platelet desensitization induced by arachidonic acid is not due to cyclooxygenase inactivation and involves the endoperoxide receptor’, Br. J. Pharmacol. 85, 849–859.

    Article  PubMed  CAS  Google Scholar 

  10. Craven, L. L. (1950) ‘Acetylsalicylic acid, possible prevention of coronary thrombosis’, Ann. West Med. Surg. 4, 95–99.

    PubMed  CAS  Google Scholar 

  11. De Clerck, F., Beetens, J., de Chaffoy de Courcelles, D., Freyne, E., and Janssen, P. A. J. (1989) ‘R 68070: Thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule - I. Biochemical profile in vitro’, Thrombosis Haemostasis 61, 35–42.

    Google Scholar 

  12. Defreyn, G., Deckmyn, H. and Vermylen, J. (1982) ‘A thromboxane synthetase inhibitor reorients endoperoxide metabolism in whole blood towards prostacyclin and prostaglandin E2’, Thromb. Res. 26, 389–400.

    Article  PubMed  CAS  Google Scholar 

  13. DeWitt, D. L., Day, J. S., Sonnenburg, W. K., and Smith, W. L. (1983) ‘Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovine aorta’, J. Clin. Invest. 72, 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  14. DeWitt, D. L., El-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Armstrong, R. L., and Smith, W. L. (1990) ‘The aspirin-and heme-binding sites of bovine and murine prostaglandin endoperoxide synthases’, J. Biol. Chem. 265, 5192–5198.

    PubMed  CAS  Google Scholar 

  15. Dorn II, G. W. (1990) ‘Cyclic oxidation-reduction reactions regulate thromboxane A2/prostaglandin H2 receptor number and affinity in human platelet membranes’, J. Biol. Chem. 265, 4240–4246.

    PubMed  CAS  Google Scholar 

  16. Dorn II, G. W. and de Jesus, A. (1991) ‘Human platelet aggregation and shape change are coupled to separate thromboxane A2-prostaglandin H2 receptors’, Am. J. Physiol. 260, H327–H334.

    PubMed  CAS  Google Scholar 

  17. Dorn II, G. W., Liel, N., Trask, J. L., Mais, D. E., Assey, M. E., and Halushka, P. V. (1990) ‘Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction’, Circulation 81, 212–218.

    Article  PubMed  Google Scholar 

  18. Ellis, E. F., Oelz, 0., Roberts II, L. J., Payne, N. A., Sweetman, B. J., Nies A. S., and Oates, J. A. (1976) ‘Coronary arterial smooth muscle contraction by a substance released from platelets: Evidence that it is thromboxane A2’, Science 193, 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  19. Elwood, P. C., Renaud, S., Sharp, D. S., Beswick, A. D., O’Brien, J. R., and Yarnell, J. W. G. (1991) ‘Ischemic heart disease and platelet aggregation’, Circulation 83, 38–44.

    Article  PubMed  CAS  Google Scholar 

  20. Fiedler, V. B., Perzborn, E., Seuter, F., Rosentreter, U., and Böshagen, H. (1989) ‘Reduction of in vivo coronary artery thrombosis by the novel thromboxane antagonist (3R)-3-(-4-fluorophenylsulfonamido)-1,2,3,4-tetrahydro-9-carbazole-propanoic acid’, ArzneimittelForsch. 39, 1527–1530.

    PubMed  CAS  Google Scholar 

  21. Fischer, S., Struppler, M., Böhlig, B., Bernutz, Ch., Wober, W., and Weber, P. C. (1983) ‘The influence of selective thromboxane synthetase inhibition with a novel imidazole derivative, UK-38,485, on prostanoid formation in man’, Circulation 68, 821–826.

    Article  PubMed  CAS  Google Scholar 

  22. FitzGerald, D. J., Catella, F., Roy, L., and FitzGerald, G. A. (1988) ‘Marked platelet activation in vivo after intravenous streptokinase in patients with acute myocardial infarction’, Circulation 77, 142–150.

    Article  PubMed  CAS  Google Scholar 

  23. FitzGerald, D. J., Fragetta, J., and FitzGerald, G. A. (1988) ‘Prostaglandin endoperoxides modulate the response to thromboxane synthase inhibition during coronary thrombosis’, J. Clin. Invest. 82, 1708–1713.

    Article  PubMed  CAS  Google Scholar 

  24. FitzGerald, D. J., Roy, L., and FitzGerald, G. A. (1985) ‘Enhanced prostacyclin and thromboxane A2 synthesis in vivo in ischemic heart disease: noninvasive evidence of sporadic platelet activation in unstable angina’, Circulation 72 (Suppl 3), III-113.

    Google Scholar 

  25. FitzGerald, G. A., Fisher, D. M., Doran, J., and Oates, J. A. (1985) ‘Pharmacological modulation of arachidonic acid metabolism in platelet-vascular interactions’, in J. A. Oates, J. Hawiger and R. Ross (eds.), Interactions of the platelets with the vessel wall, Am. Physiol. Soc., Bethesda, pp. 103–110.

    Google Scholar 

  26. FitzGerald, G. A., Smith, B., Pedersen, A. K., and Brash, A. R. (1984) ‘Prostacyclin biosynthesis is increased in patients with severe atherosclerosis and platelet activation’, New Engl. J. Med. 310, 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  27. FitzGerald, G. A., Oates, J. A., Hawiger, J. A., Maas, R. L., Roberts II, L. J., Lawson, J. A., and Brash, A. R. (1983) ‘Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man’, J. Clin. Invest. 71, 676–688.

    Article  PubMed  CAS  Google Scholar 

  28. Folts, J. D., Crowell, E. D., and Rowe, G. G. (1976) ‘Platelet aggregation in partially obstructed vessels and its elimination with aspirin’, Circulation 54, 365–370.

    Article  PubMed  CAS  Google Scholar 

  29. Friedrich, T., Lichey, J., Nigam, S., Priesnitz, M., and Weg-scheider, K. (1985) ‘Follow-up of prostaglandin plasma levels after acute myocardial infarction’, Am. Heart J. 109, 218–222.

    Article  PubMed  CAS  Google Scholar 

  30. Frishman, W. H., Christodoulou, J., Weksler, B. B., Smithen, C., Killip, T., and Scheidt, S. (1976) ‘Aspirin therapy in angina pectoris: effects on platelet aggregation, exercise tolerance, and echocardiographic manifestations of ischemia’, Am. Heart J. 92, 3–10.

    Article  PubMed  CAS  Google Scholar 

  31. Fukumori, T., Tani, E., Maeda, Y., and Sukenaga, A. (1984) ‘Effect of selective inhibitor of thromboxane A2 synthetase on experimental cerebral vasospasm’, Stroke 15, 306–311.

    Article  PubMed  CAS  Google Scholar 

  32. Fuster, V., Cohen, M., and Halperin, J. (1989) ‘Aspirin in the prevention of coronary disease’, New Engl. J. Med. 321, 183–185.

    Article  PubMed  CAS  Google Scholar 

  33. Fuster, V., Stein, B., Halperin, J. L., and Chesebro, J. H. (1990) ‘Antithrombotic therapy in cardiac disease: An approach based on pathogenesis and risk stratification’, Am. J. Cardiol. 65, 38C–44C.

    Article  PubMed  CAS  Google Scholar 

  34. Giessen van der, W. J., Zijlstra, F. J., Berk, L., and Verdouw, P. D. (1988) ‘The effect of the thromboxane receptor antagonist BM 13.177 on experimentally induced coronary thrombosis in the pig’, Eur. J. Pharmacol. 147, 241–248.

    Article  Google Scholar 

  35. Gresele, P., Blockmans, D., Deckmyn, H., and Vermylen, J. (1988) ‘Adenylate cyclase activation determines the effect of thromboxane synthase inhibitors on platelet aggregation in vitro. Comparison of platelets from responders and nonresponders’, J. Pharmacol. Exp. Ther. 246, 301–307.

    PubMed  CAS  Google Scholar 

  36. Gresele, P., Deckmyn, H., Nenci, G.G., and Vermylen, J. (1991) ‘Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders’, TiPS 12, 158–163.

    PubMed  CAS  Google Scholar 

  37. Halushka, P. V., Mais, S. E., and Saussy Jr., D. L. (1987) ‘Platelet and vascular smooth muscle thrombaxane A2/prostaglandin H2 receptors’, Fed. Proc. 46, 149–153.

    PubMed  CAS  Google Scholar 

  38. Hass, W. K., Easton, J. D., Adams Jr., H. P., Pryse-Phillips, W., Molony, B. A., Anderson, S., and Kamm, B. (1989) ‘A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients’, New Engl. J. Med. 321, 501–507.

    Article  PubMed  CAS  Google Scholar 

  39. Hawiger, J. (1989) ‘Methods in Enzymology. Platelets: Receptors, Adhesion, Secretion’ Part A, Vol 169, Academic Press, San Diego.

    Google Scholar 

  40. Heavey, D. J., Barrow, S. E., Hickling, N. E., and Ritter, J. M. (1985) ‘Aspirin causes short-lived inhibition of bradykinin-stimulated prostacyclin production in man’, Nature 318, 186–188.

    Article  PubMed  CAS  Google Scholar 

  41. Henriksson, P., Wennmalm, A., Edhag, O., Vesterqvist, O., and Green, K. (1986) ‘In vivo production of prostacyclin and thromboxane in patients with acute myocardial infarction’, Br. Heart J. 55, 543–548.

    Article  PubMed  CAS  Google Scholar 

  42. Hohlfeld, Th., Strobach, H., and Schrör, K. (1991) ‘Stimulation of prostacyclin synthesis by defibrotide: improved contractile recovery from myocardial stunning’, J. Cardiovasc. Pharmacol. 17, 108–115.

    Article  PubMed  CAS  Google Scholar 

  43. Holzgrefe, H. H., Buchanan, L. V., and Bunting, S. (1987) ‘In vivo characterization of synthetic thromboxane A2 in canine myocardium’, Circ. Res. 60, 290–296.

    Article  PubMed  CAS  Google Scholar 

  44. Houston, D. S., Sheperd, J. T., and Vanhoutte, P. M. (1986) ‘Ag-gregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated coronary arteries. Role of serotonin, thromboxane A2 and adenine nucleotides’, J. Clin. In-vest. 78, 539–544.

    Article  CAS  Google Scholar 

  45. Husted, S. E., Kraemmer-Nielsen, H., Krusell, L. R., and Faergeman, O. (1989) ‘Acetylsalicylic acid 100 mg and 1000 mg daily in acute myocardial infarction suspects: a placebo-controlled trial’, J. Int. Med. 226, 303–310.

    Article  CAS  Google Scholar 

  46. Hutton, I., Tweddel, A. C., Rankin, A. C., Walker, I. D., and Davidson, J. F. (1983) ‘Effects of dazoxiben on transcardiac thromboxane levels and haemodynamics in coronary heart disease’, Br. J. Clin. Pharmacol. 15, 79S–82S.

    Article  PubMed  Google Scholar 

  47. Ito, T., Ogawa, K., Watanabe, J., Chen, L. S., Shikano, M., Shibata, T., Ito, Y., Miyazaki, Y., and Satake, T. (1984) ‘Selective thromboxane inhibitor and ischemic heart disease’, Biomed. Biochim. Acta 43, S125–S132.

    PubMed  CAS  Google Scholar 

  48. Jaschonek, K., Karsch, K. R., Weisenberger, H., Tidow, S., Faul, C., and Renn, W. (1986) ‘Platelet prostacyclin binding in coronary artery disease’, J. Am. Coll. Cardiol. 8, 259–266.

    Article  PubMed  CAS  Google Scholar 

  49. Kahn, N. N., Mueller, H. S., and Sinha, A. K. (1990) ‘Impaired prostaglandin E1/I2 receptor activity of human blood platelets in acute ischemic heart disease’, Circ. Res. 66, 932–940.

    Article  PubMed  CAS  Google Scholar 

  50. Kaley, G., Messina, E. J., Hintze, T. H., Roberts, A. M., Martin, E. G., and Slomiany, B. L. (1977) ‘Effects of the metabolites of arachidonic acid on coronary blood flow’, Prostaglandins 13, 1011.

    Google Scholar 

  51. Knapp, H. R., Healy, C., Lawson, J., and FitzGerald, G. A. (1988) ‘Effects of low-dose aspirin on endogenous eicosanoid formation in normal and atherosclerotic men’, Thromb. Res. 50, 377–386.

    Article  PubMed  CAS  Google Scholar 

  52. Lane, I. F., Lumley, P., Michael, M. F., Peters, A. M., and Mc-Collum, C. N. (1990) ‘A specific thromboxane receptor blocking drug, AH 23848, reduces platelet deposition on vascular grafts in man’, Thromb. Haemost. 64, 369–373.

    PubMed  CAS  Google Scholar 

  53. Lanza, F., Berettz, A., Stierle, A., Hanau, D., Kubina, M., and Cazenave, J.-P. (1988) ‘Epinephrine potentiates human platelet activation but is not an aggregating agent’ Am. J. Physiol. 255, H1276–H1288.

    PubMed  CAS  Google Scholar 

  54. Lee, T. K., Chen, Y. C., Lien, I. N., Liu, M. C., and Huang, Z. S. (1988) ‘Inhibitory effect of acetylsalicylic acid on platelet function in patients with completed stroke or reversible ischemic neurologic deficit’, Stroke 19, 566–570.

    Article  PubMed  CAS  Google Scholar 

  55. Löbel, P. and Schrör, K. (1985) ‘Selective stimulation of coronary vascular PGI2 but not of platelet thromboxane formation by defibrotide in the platelet perfused heart’, Naunyn-Schmiedeberg’s Arch. Pharmacol. 331, 125–130.

    Article  Google Scholar 

  56. Lorenz, R. L., Boehlig, B., Uedelhoven, W. M., and Weber, P. C. (1989) ‘Superior antiplatelet action of alternate day pulsed dosing versus split dose administration of aspirin’, Am. J. Car-diol. 64, 1185–1188.

    CAS  Google Scholar 

  57. Manson, J. E., Grobbee, D. E., Stampfer, M. J., Taylor, J. 0., Goldhaber, S. Z., Gaziano, J. M., Ridker, P. M., Buring, J. E., and Hennekens, C. H. (1990) ‘Aspirin in the primary prevention of angina pectoris in a randomized trial of United States physicians’, Am. J. Med. 89, 772–776.

    Article  PubMed  CAS  Google Scholar 

  58. Marcus, A. J., Weksler, B. B., Jaffe, E. A., and Broekman, M. J. (1980) ‘Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells’, J. Clin. Invest. 66, 979–986.

    Article  PubMed  CAS  Google Scholar 

  59. Mayeux, P. R., Morton, H. E., Gillard, J., Lord, A., Morinelli, T. A., Boehm, A., Mais, D. E., and Halushka, P. V. (1988) ‘The affinities of prostaglandins H2 and thromboxane A2 for their re-ceptors are similar in washed human platelets’, Biochem. Biophys. Res. Comm. 157, 733–739.

    Article  PubMed  CAS  Google Scholar 

  60. Mehta, J. L. and Nichols, W. W. (1990) ‘The potential role of thromboxane inhibitors in preventing myocardial ischaemic injury’, Drugs 40, 657–665.

    Article  PubMed  CAS  Google Scholar 

  61. Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1987) xxx ‘Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance’, in M. Verstraete, J. Vermylen, H. R. Lijnen, and J. Arnout (eds.), Thrombosis and Hemostasis, Leuven University Press, pp. 597–618.

    Google Scholar 

  62. Mueller, H. S., Rao, P. S., Greenberg, M. A., Buttrick, P. M., Sussman I. I., Levite, H. A., Grose, R. M., Perez-Davila, V., Strain, J. E., and Spaet, T. H. (1985) ‘Systemic and transcardiac platelet activity in acute myocardial infarction in man: resistance to prostacyclin’, Circulation 72, 1336–1345.

    Article  PubMed  CAS  Google Scholar 

  63. Mullane, K. M. and Fornabaio, D. (1988) ‘Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin sensitive pathway’, Circ. Res. 62, 668–678.

    Article  PubMed  CAS  Google Scholar 

  64. Murray, R., Shipp, E., and FitzGerald, G. A. (1990) ‘Prostaglandin endoperoxide thromboxane A2 receptor desensitization - Cross talk with adenylate cyclase in human platelets’, J. Biol. Chem. 265, 21670–21675.

    PubMed  CAS  Google Scholar 

  65. Nicolaou, K. C., Magolda, R. L., Smith, J. B., Aharony, D., Smith, E. F., and Lefer, A. M. (1979) ‘Synthesis and biological properties of pinane-thromboxane A2, a selective inhibitor of coronary artery constriction, platelet aggregation and thromboxane formation’, Proc. Natl. Acad. Sci. 76, 2566–2570.

    Article  PubMed  CAS  Google Scholar 

  66. Nowak, J. and FitzGerald, G. A. (1989) ‘Redirection of prostaglandin endoperoxide metabolism at the platelet-vascular interface in man’, J. Clin. Invest. 3, 380–385.

    Article  Google Scholar 

  67. O’Brien, J. R. (1969) ‘Effects of salicylates on human platelets’, Lancet I, 779–783.

    Google Scholar 

  68. Patrono, C. (1989) ‘Aspirin and human platelets: from clinical trials to acetylation of cyclooxygenase and back’, TiPS 10, 453–458.

    PubMed  CAS  Google Scholar 

  69. Patscheke, H. (1985) ‘Thromboxane synthase inhibition potentiates washed platelet activation by endogenous and exogenous arachidonic acid’, Biochem. Pharmacol. 34, 1151–1156.

    Article  PubMed  CAS  Google Scholar 

  70. Patscheke, H., Staiger, C., Neugebauer, G., Kaufmann, B., Strein, K., Endele, R., and Stegmeier, K. (1986) ‘The pharmacokinetic and pharmacodynamic profiles of the thromboxane A2-receptor blocker BM 13.177’, Clin. Pharmacol. Ther. 39, 145–150.

    Article  PubMed  CAS  Google Scholar 

  71. Patscheke, H. (1990) ‘Thromboxane A2/Prostaglandin H2 receptor antagonists. A new therapeutic principle’, Stroke (Suppl IV), 139–142.

    Google Scholar 

  72. Perzborn, E., Fiedler, V. B., Seuter, F., Stasch, J. P., Weber, H., Sander, E., Böshagen, H., and Rosentreter, U. (1990) ‘Cha-racterization of Bay U 3405, a novel thromboxane A2/endoperoxide receptor antagonist’, Stroke 21 (Suppl IV), 143–151.

    Google Scholar 

  73. Reilly, I. A. and FitzGerald, G. A. (1987) ‘Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs’, Blood 69, 180–186.

    PubMed  CAS  Google Scholar 

  74. Riess, H., Höfling, B. V., Arnim, T., and Hiller, E. (1986) ‘Thromboxane receptor blockade versus cyclooxigenase inhibition: antiplatelet effects in patients’, Thromb. Res. 42, 235–245.

    Article  PubMed  CAS  Google Scholar 

  75. RISC-Group (1990) ‘Risk of myocardial infarction and death during treatment with low-dose aspirin and intravenous heparin in man with unstable coronary artery disease’, Lancet 336: 827–830.

    Article  Google Scholar 

  76. Ritter, J. M., Doktor, H. S., Benjamin, N., Barrow, S. E., and Stewart-Long, P. (1990) ‘On the mechanism of the prolonged action in man of GR 32191, a thromboxane receptor antagonist’, Adv. Prostaglandin Thromboxane Leukotriene Res. 21, 351–354.

    Google Scholar 

  77. Schrör, K., Ackermann, G., Hohlfeld, Th., Löbel, P., Ney, P., Schröder, H., and Strobach, H. (1989) ‘Endothelial protection by defibrotide - a new strategy for treatment of myocardial infarction?’, Z. Kardiol. 6, 35–41.

    Article  Google Scholar 

  78. Schrör, K. and Braun, M. (1990) ‘Platelets as a source of vasoactive mediators’, Stroke 21 (Suppl IV), 32–35.

    Google Scholar 

  79. Schrör, K., Köhler, P., Miller, M., Peskar, B. A., and Rösen, P. (1981) ‘Prostacyclin-thromboxane interactions in the plateletperfused in vitro heart’, Am. J. Physiol. 241, H18–H25.

    PubMed  Google Scholar 

  80. Schrör, K. (1990) ‘Platelet reactivity and arachidonic acid metabolism in type II hyperlipoproteinaemia and its modification by cholesterol-lowering agents, Eicosanoids 3, 67–73.

    PubMed  Google Scholar 

  81. Schrör, K., Smith III, E. F., Bickerton, M., Smith, J. B., Nicolaou, K. C., Magolda, R., and Lefer, A. M. (1980) ‘Preservation of the ischemic myocardium by pinane thromboxane A2’, Am. J. Physiol. 238, H87–H92.

    PubMed  Google Scholar 

  82. Schrör, K. (1990) ‘Thromboxane A2 and platelets as mediators of coronary arterial vasoconstriction in myocardial ischaemia’, Eur. Heart J. 11 (Suppl B), 27–34.

    PubMed  Google Scholar 

  83. Schumacher, W. A., Heran, C. L., Goldenberg, H. J., Harris, D. N., and Ogletree, M. L. (1989) ‘Magnitude of thromboxane receptor antagonism necessary for antithrombotic activity in monkeys’, Am. J. Physiol. 256, H726–H734.

    PubMed  CAS  Google Scholar 

  84. Shikano, M., Ito, T., Ogawa, K., and Satake, T. (1987) ‘Effects of a selective thromboxane synthetase inhibitor (OKY-046) in patients with coronary artery disease during exercise’, Jap. Heart J. 28, 663–674.

    Article  PubMed  CAS  Google Scholar 

  85. Sills, T. and Heptinstall, S. (1986) ‘Effects of a thromboxane synthetase inhibitor and a cAMP phosphodiesterase inhibitor, singly and in combination, on platelet behaviour’, Thromb. Haemostasis 55, 305–308.

    CAS  Google Scholar 

  86. Smith III, E. F., Griswold, D. E., Egan, J. W., Hillegass, L. M., and DiMartino, M. J. (1989) ‘Reduction of myocardial damage and polymorphonuclear leukocyte accumulation following coronary artery occlusion and reperfusion by the thromboxane receptor antagonist BM 13.505’, J. Cardiovasc. Pharmacol. 13, 715–722.

    PubMed  CAS  Google Scholar 

  87. Smith, J. B. and Willis, A. L. (1971) ‘Aspirin selectively inhibits prostaglandin production in human platelets’, Nature New Biol. 231, 235–237.

    PubMed  CAS  Google Scholar 

  88. Sobel, M., Salzman, E. W., Davies, G. C., Handin, R. I., Sweeney, J., Ploetz, J., and Kurland, G. (1981) ‘Circulating platelet products in unstable angina pectoris’, Circulation 63, 300–306.

    Article  PubMed  CAS  Google Scholar 

  89. Steering Committee of the physician’s health study research group (1989) ‘Final report on the aspirin component of the ongoing physician’s health study’, New Engl. J. Med. 321, 129–135.

    Article  Google Scholar 

  90. Stein, B., Fuster, V., Israel, D. H., Cohen, M., Badimon, L., Badimon, J.J., and Chesebro, J. H. (1989) ‘Platelet inhibitor agents in cardiovascular disease: an update’, J. Am. Coll. Cardiol. 14, 813–836.

    Article  PubMed  CAS  Google Scholar 

  91. Svensson, J. and Hamberg, M. (1976) ‘Thromboxane A2 and prostaglandin H2: potent stimulators of the swine coronary artery’, Prostaglandins 12, 943–950.

    PubMed  CAS  Google Scholar 

  92. Takahara, K., Murray, R., FitzGerald, G. A., and FitzGerald, D. J. (1990) ‘The response to thromboxane A2 analogues in human platelets. Discrimination of two binding sites linked to distinct effector systems’, J. Biol. Chem. 265, 6836–6844.

    PubMed  CAS  Google Scholar 

  93. Thaulow, E., Dale, J., and Myhre, E. (1984) ‘Effects of selective thromboxane sythetase inhibitor, dazoxiben and of acetyl salicylic acid on myocardial ischemia in patients with coronary artery disease’, Am. J. Cardiol. 53, 1255.

    Article  PubMed  CAS  Google Scholar 

  94. Thiemermann, C., Ney, P., and Schrör, K. (1988) ‘The thromboxane receptor antagonist, daltroban, protects the myocardium from ischaemic injury resulting in suppression of leukocytosis’, Eur. J. Pharmacol. 155, 57–67.

    Article  PubMed  CAS  Google Scholar 

  95. Tremoli, E., Maderna, P., Colli, S., Morazzoni, G., Sirtori, M., and Sirtori, C. R. (1984) ‘Increased platelet sensitivity and thromboxane B2 formation in type II hyperlipoproteinaemic patients’, Eur. J. Clin. Invest. 14, 329–333.

    Article  PubMed  CAS  Google Scholar 

  96. Tyler, H. M., Saxton, C. A. P. D., Parry, M. J. (1981) ‘Administration to man of UK-37,248–01, a selective inhibitor of thromboxane synthetase’, Lancet 1, 629–632.

    Article  PubMed  CAS  Google Scholar 

  97. UK-TIA Study Group (1988) ‘United kingdom transient ischaemic attack trial: interim results’, Br. Med. J. [Clin. Res.] 296, 316–320.

    Article  Google Scholar 

  98. Verheggen, R. and Schrör, K. (1986) ‘The modification of platelet-induced vasoconstriction by a thromboxane receptor antagonist’, J. Cardiovasc. Pharmacol. 8, 483–490.

    Article  PubMed  CAS  Google Scholar 

  99. Verheugt, F. W. A., van der Laarse, A., Funke-KUpper, A. J., Sterkman, L. G. W., Galema, T. W., and Roos, J. P. (1990) ‘Effects of early intervention with low-dose aspirin (100 mg) on infarct size, reinfarction and mortality in anterior wall acute myocardial infarction’, Am. J. Cardiol. 66, 267–270.

    Article  PubMed  CAS  Google Scholar 

  100. Yang, Z., Stulz, P., v. Segesser, L., Bauer, E., Turina, M., and Löscher, T. F. (1991) ‘Different interactions of platelets with arterial and venous coronary bypass vessels’, Lancet 337, 938–943.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schrör, K. (1991). Pharmacological Modification of Platelet-Derived Cyclooxygenase Product Formation and Its Consequences for Platelet-Vessel Wall Interactions. In: Herman, A.G. (eds) Antithrombotics. Developments in Cardiovascular Medicine, vol 126. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3484-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3484-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5540-6

  • Online ISBN: 978-94-011-3484-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics