Skip to main content

Role of Nitric Oxide in Endothelial Cell - Platelet Interactions

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 126))

Abstract

Nitric oxide (NO) is synthesized by constitutive and inducible NO synthases. The formation of NO by the constitutive enzyme and subsequent stimulation of the soluble guanylate cyclase in the vascular system is part of the control mechanisms which regulate haemostasis and counteract thrombosis. An impaired production of NO may result in platelet activation and thrombosis. In contrast, a prolonged activation of constitutive and/or the expression of inducible NO synthases may provide amounts of NO capable of inhibiting platelet function and inducing bleeding diathesis. Finally, the pharmacological administration of drugs which generate NO or compounds which modulate the activity of NO synthases may prove to be of therapeutic value for restoration of the haemostatic balance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada, S., Gryglewski, R.J., Bunting, S., Vane, J.R. (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263,663–665.

    PubMed  CAS  Google Scholar 

  2. Moncada, S., Vane, J.R. (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol.Rev.30,293–331.

    Google Scholar 

  3. Moncada, S. (1982) Biological importance of prostacyclin Br.J.Pharmaco1.76,3–31.

    CAS  Google Scholar 

  4. Vane, J.R. (1982) Prostacyclin: a hormone with a therapeutic potential. The Sir Henry Dale Lecture for 1981. J.Endocrino1.95,3P–43P.

    CAS  Google Scholar 

  5. Moncada,S., Palmer, R.M.J., Higgs, E.A. (1990) Platelet-vessel wall interactions: Eicosanoids and EDRF in: Atherosclerosis Reviews vol.21, eds. A. Leaf, P.C. Weber, Raven Press, New York, pp.71–77.

    Google Scholar 

  6. Furchgott, R.F., Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288,373–376.

    PubMed  CAS  Google Scholar 

  7. Moncada, S., Palmer, R.M.J, Higgs, E.A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 1991 submitted.

    Google Scholar 

  8. Palmer, R.M.J., Ferrige, A.G., Moncada, S. (1987) Nitric oxide accounts for the biological activity of endothelium - derived relaxing factor. Nature 327,524–526.

    PubMed  CAS  Google Scholar 

  9. Hutchinson, P.J.A., Palmer, R.M.J., Moncada, S. (1987) Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur. J. Pharmacol. 141,445–451.

    PubMed  CAS  Google Scholar 

  10. Radomski, M.W., Palmer, R.M.J., Moncada, S. (1987) Comparative pharmacology of endothelium - derived relaxing factor, nitric oxide and prostacyclin in platelets. Br. J. Pharmacol. 92,181–187.

    PubMed  CAS  Google Scholar 

  11. Radomski, M.W., Palmer, R.M.J., Moncada S. (1987) The anti - aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br.J.Pharmacol. 92,639–646.

    PubMed  CAS  Google Scholar 

  12. Radomski, M.W, Palmer, R.M.J., Moncada, S. (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet ii,1057–1058.

    Google Scholar 

  13. Radomski, M.W., Palmer, R.M.J., Moncada, S. (1987) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun. 148,1482–1489.

    PubMed  CAS  Google Scholar 

  14. Ignarro, L.J, Buga, G.M., Wood, K.S., Byrns, R.E., Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84,9265–9269

    PubMed  CAS  Google Scholar 

  15. Khan, M.T., Furchgott, R.F. (1987) Additional evidence that endothelium - derived relaxing factor is nitric oxide in: Pharmacology M.J. Rand, and C. Roper (eds.). Elsevier Amsterdam,pp.341–344.

    Google Scholar 

  16. Kelm, M., Feelisch, M., Spahr, R., Piper, H.M., Noack, E., Schrader, J. (1988) Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem. Biophys. Res. Commun. 154,236–244.

    PubMed  CAS  Google Scholar 

  17. Palmer, R.M.J., Ashton, D.S., Moncada, S. (1988) Vascular endothelial cells synthesize nitric oxide from L -arginine. Nature 333,664–666.

    PubMed  CAS  Google Scholar 

  18. Radomski, M.W., Palmer, R.M.J., Moncada, S. (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. USA 87,5193–5197.

    PubMed  CAS  Google Scholar 

  19. Leone, A.M., Palmer, R.M.J., Knowles, R.G., Francis, P.L., Ashton, D.S., Moncada, S. Constitutive and inducible nitric oxide synthases are L -arginine NG-,CG- dioxygenases. J. Biol. Chem., 1991 submitted.

    Google Scholar 

  20. Moncada, S., Palmer, R.M.J.,Higgs, E.A. (1988) The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 12,365–372

    PubMed  CAS  Google Scholar 

  21. Pohl, U., Busse, R., Kuon, E., Bassenge, E. (1986) Pulsatile perfusion stimulates the release of endothelial autacoids. J. Appl. Cardiol. 1,215–235.

    CAS  Google Scholar 

  22. Rubanyi, G.M., Romero, J.C., Vanhoutte, P.M. (1986) Flow-induced release of endothelium - derived relaxing factor. Am. J. Physiol. 250,H1145–H1149.

    PubMed  CAS  Google Scholar 

  23. Drexler, H., Zeiher, A.M., Wollschlager, H., Meinertz, T., Just, H., Bonzel, T. (1989) Flow-dependent coronary artery dilatation in humans. Circulation 80,466–474.

    PubMed  CAS  Google Scholar 

  24. Radomski, M.W., Palmer, R.M.J., Moncada, S. (1990) Characterization of the L -arginine: nitric oxide pathway in human platelets. Br. J. Pharmacol. 101,325–328.

    PubMed  CAS  Google Scholar 

  25. Lansman, J.B., Hallam, T.J., Rink, T.J. (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers ? Nature 325,811–813.

    PubMed  CAS  Google Scholar 

  26. Ohno, M., Ochiai, M., Taguchi, J., Hara, K., Akatsuka, N., Kurokawa, K. (1990) Stretch may enhance the release of endothelium-derived relaxing factor in rabbit aorta. Biochem. Biophys. Res. Commun. 173,1038–1042

    PubMed  CAS  Google Scholar 

  27. Siess, W. (1989) Molecular mechanisms of platelet activation. Physiol. Rev. 69,58–178.

    PubMed  CAS  Google Scholar 

  28. Waldmann, R., Bauer, S., Gobel, C., Hofmann, F., Jakobs, K.H., Walter, U. (1986) Demonstration of cGMP- dependent protein kinase and cGMP- dependent phosphorylation in cell-free extracts of platelets. Eur J. Biochem. 158,203–210.

    PubMed  CAS  Google Scholar 

  29. Nakashima, S., Tohmatsu, T., Hattori, H., Okano, Y., Nozawa, Y. (1986) Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun. 135,1099–1104.

    CAS  Google Scholar 

  30. Waldmann, R., Nieberding, M., Walter, U. (1987) Vasodilator-stimulated protein phosphorylation in platelets is mediated by cAMP - and cGMP - dependent protein kinases. Eur. J. Biochem. 167,441–448.

    PubMed  CAS  Google Scholar 

  31. Waldmann, R., Walter U. (1989) Cyclic nucleotide elevating vasodilators inhibit platelet aggregation at an early step of the activation cascade. Eur. J. Pharmacol. 159,317–320.

    PubMed  CAS  Google Scholar 

  32. Walter U. Physiological role of cGMP and cGMP - dependent protein kinase in the cardiovascular system. (1989) Rev. Physiol. Biochem. Pharmacol. 113,41–88.

    PubMed  CAS  Google Scholar 

  33. Matsuoka, I., Nakahata, N., Nakanish, H. (1989) Inhibitory effect of 8-bromo cyclic GMP on an extracellular Ca2+- dependent arachidonic acid liberation in collagen - stimulated rabbit platelets. Biochem. Pharmacol. 38,1841–1847.

    CAS  Google Scholar 

  34. Sane, D.C., Bielawska, A., Greenberg, C.S., Hannun, Y.A. (1989) Cyclic GMP analogs inhibit thrombin-induced arachidonic acid release in human platelets. Biochem. Biophys. Res. Commun. 165,708–714.

    PubMed  CAS  Google Scholar 

  35. Ignarro, L.J. (1989) Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Sem. Hematol. 26,63–76.

    CAS  Google Scholar 

  36. Martin, W., White, D.G., Henderson, A.H. (1988) Endothelium - derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br. J. Pharmacol. 93,229–239.

    PubMed  CAS  Google Scholar 

  37. Doni, M.G., Whittle, B.J.R., Palmer, R.M.J., Moncada, S. (1988) Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur. J. Pharmacol. 151,19–25.

    PubMed  CAS  Google Scholar 

  38. Boulanger, C., Schini, V.B., Moncada, S., Vanhoutte, P.M. (1990) Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br. J. Pharmacol. 101,152–156.

    PubMed  CAS  Google Scholar 

  39. Lang, D., Lewis, M.J. (1991) Inhibition of inositol 1,4,5- triphosphate formation by cyclic GMP in cultured aortic endothelial cells of the pig. Br. J. Pharmacol. 102,277–281.

    PubMed  CAS  Google Scholar 

  40. Morgan, R.O., Newby, A.C. (1989) Nitroprusside differentially inhibits ADP - stimulated calcium influx and mobilization in human platelets. Biochem. J. 258,447–454.

    PubMed  CAS  Google Scholar 

  41. Hidaka, H., Asano, T. (1976) Human blood platelet 3’:5’- cyclic nucleotide phosphodiesterase. Biochim. Biophys. Acta 429,485–497.

    PubMed  CAS  Google Scholar 

  42. Grant, P.G., Mannarino, A.F., Colman, R.W. (1990) Purification and characterization of a cyclic GMP- stimulated cyclic nucleotide phosphodiesterase from the cytosol of human platelets. Thromb. Res.59,105–119.

    PubMed  CAS  Google Scholar 

  43. Grant, P.G., Colman, R.W. (1984) Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23,1801–1807.

    PubMed  CAS  Google Scholar 

  44. Lugnier, C., Schini, V. (1988) Characterization of cyclic nucleotide phosphodiesterases in cultured bovine aortic endothelial cells. Br. J. Pharmacol. 94,406P.

    Google Scholar 

  45. Souness, J.E., Diocee, B.K., Martin, W., Moodie, S.A. (1990) Pig aortic endothelial -cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells. Biochem. J. 266,127–132.

    PubMed  CAS  Google Scholar 

  46. Radomski, M.W., Palmer, R.M.J., Moncada, S. (1991) Modulation of platelet aggregation by an arginine: nitric oxide pathway. TIPS, 12,87–88.

    PubMed  CAS  Google Scholar 

  47. Murray, R., Shipp, E., FitzGerald, G.A. (1990) Prostaglandin endoperoxide/thromboxane A2 receptor desensitization. Cross-talk with adenylate cyclase in human platelets. J. Biol. Chem. 265,21670–21675.

    PubMed  CAS  Google Scholar 

  48. Sneddon, J.M., Vane, J.R. (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc. Natl. Acad. Sci. USA 85,2800–2804.

    PubMed  CAS  Google Scholar 

  49. Venturini, C.M., Del Vecchio, P.J., Kaplan, J.E. (1989) Thrombin induced platelet adhesion to endothelium is modified by endothelial derived relaxing factor (EDRF). Biochem. Biophys. Res. Commun. 159,349–354.

    PubMed  CAS  Google Scholar 

  50. Venturini, C.M., Minnear, F.L., Del Vecchio, P.J., Fenton II, J.W., Kaplan, J.E. (1990) Thrombin - induced platelet adhesion to endothelial cells in culture and under flow conditions: Role of endothelium - derived relaxing factor and prostacyclin. In: Endothelium - derived relaxing factors G.M. Rubanyi, and P.M. Vanhoutte (eds.) S. Karger, Basel, pp.315–324.

    Google Scholar 

  51. Pohl, U., Busse, R. (1989) EDRF increases cyclic GMP in platelets during passage through the coronary vascular bed. Circ. Res. 65,1798–1803.

    PubMed  CAS  Google Scholar 

  52. Wiesmuller, G., Bernards, W., Klaus, W., Rosen, R. (1989) Role of endothelium on platelet adhesion and aggregation in isolated rabbit hearts. Naunyn Schmmiedeberg’s Arch. Pharmacol. 340S:R58.

    Google Scholar 

  53. Azuma, H., Ishikawa, M., Sekizaki, S. (1986) Endothelium dependent inhibition of platelet aggregation. Br. J. Pharmacol. 88,411–415.

    PubMed  CAS  Google Scholar 

  54. Furlong, B., Henderson, A.H., Lewis, M.J., Smith, J.A. (1987) Endothelium - derived relaxing factor inhibits in vitro platelet aggregation. Br. J. Pharmacol. 90,687–692.

    PubMed  CAS  Google Scholar 

  55. Busse, R., Luckhoff, A., Bassenge, E. (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn Schmiedeberg’s Arch. Pharmacol. 336,566–571.

    CAS  Google Scholar 

  56. Macdonald, P.S., Read, M.A., Dusting, G.J. (1988) Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb. Res. 49,437–449.

    PubMed  CAS  Google Scholar 

  57. Hawkins, D.J., Meyrik, B.O., Murray, J.J. (1988) Activation of guanylate cyclase and inhibition of platelet aggregation by endothelium-derived relaxing factor released from cultured cells. Biochim. Biophys. Acta 969,289–296.

    PubMed  CAS  Google Scholar 

  58. Bult, H., Fret, H.R.L., van den Bossche, R.M, Herman, A.G.(1988) Platelet inhibition by endothelium - derived relaxing factor from the rabbit perfused aorta. Br. J. Pharmacol. 95,1308–1314.

    PubMed  CAS  Google Scholar 

  59. Alheid, U., Reichwehr, I., Forstermann, U. (1989) Human endothelial cells inhibit platelet aggregation by separately stimulating platelet cyclic AMP and cyclic GMP. Eur. J. Pharmacol. 164,103–110.

    PubMed  CAS  Google Scholar 

  60. Houston, D.S., Robinson, P., Gerrard, J.M. (1990) Inhibition of intravascular platelet aggregation by endothelium - derived relaxing factor: reversal by red blood cells. Blood 76,953–958.

    PubMed  CAS  Google Scholar 

  61. Bhardwaj, R., Page, C.P., May, G.R., Moore, P.K. (1988) Endothelium -derived relaxing factor inhibits platelet aggregation in human whole blood in vitro and in the rat in vivo. Eur. J. Pharmacol. 157,83–91.

    PubMed  CAS  Google Scholar 

  62. Hogan, J.C., Lewis, M.J., Henderson, A.H. (1988) In vivo EDRF activity influences platelet function. Br. J. Pharmacol. 94,1020–1022.

    PubMed  CAS  Google Scholar 

  63. Humphries, R.G., Tomlinson, W., O’Connor, S.E., Leff, P. (1990) Inhibition of collagen-and ADP - induced platelet aggregation by substance P in vivo: Involvement of endothelium-derived relaxing factor. J. Cardiovasc. Pharmacol. 16,292–297.

    PubMed  CAS  Google Scholar 

  64. Whittle, B.J.R., Moncada, S., Vane, J.R. (1978) Comparison of prostacyclin (PGI2), prostaglandin El and D2 on platelet agregation in different species. Prostaglandins 16,373–388.

    PubMed  CAS  Google Scholar 

  65. Loscalzo, J., Vaughan, D.E. (1987) Tissue plasminogen activator promotes platelet disaggregation in plasma. J. Clin. Invest. 79,1749–1755

    PubMed  CAS  Google Scholar 

  66. Terres, W., Umnus, S., Mathey, D.G., Bleifeld, W. (1990) Effects of streptokinase, urokinase, and recombinant tissue plasminogen activator on platelet aggregability and stability of platelet aggregates. Cardiovasc.Res. 24,471–477.

    PubMed  CAS  Google Scholar 

  67. Soslau, G., Parker, J. (1989) Modulation of platelet function by extracellular adenosine triphosphate. Blood 74,984–993.

    PubMed  CAS  Google Scholar 

  68. Blair, I.A., Barrow, S.E., Waddell, K.A., Lewis, P.J., Dollery, C.T. (1982). Prostacyclin is not a circulating hormone in man. Prostaglandins 23,579–589.

    PubMed  CAS  Google Scholar 

  69. Radomski, M.W. (1989) Vascular endothelium in haemostasis and thrombosis. Role of prostacyclin and EDRF. Acta Physiol. Pol. 40,S97–S109 (in Polish).

    Google Scholar 

  70. Schafer, A.I., Zavoico, G.B., Loscalzo, J., Mass, A.K. (1987) Synergistic inhibition of platelet activation by plasmin and prostaglandin I2. Blood 69,1504–1507.

    PubMed  CAS  Google Scholar 

  71. Grant, J.A., Scrutton, M.C. (1980) Positive interaction between agonists in the aggregation response of human blood platelets: Interaction between ADP, adrenaline and vasopressin. Br. J. Haematol. 44,109–125.

    PubMed  CAS  Google Scholar 

  72. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., Nishizuka, Y. (1983) Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J. Biol. Chem. 258,6701–6704.

    PubMed  CAS  Google Scholar 

  73. Ardlie, N.G, Cameron, H.A, Garrett, J. (1984) Platelet activation by disease. Thromb. Res. 36,315–322.

    PubMed  CAS  Google Scholar 

  74. Ardlie, N.G., Bell, L.K., McGuiness, J.A. (1987) Synergistic potentiation by epinephrine of collagen or thrombin-induced calcium mobilization in human platelets. Thromb. Res. 46,519–526.

    PubMed  CAS  Google Scholar 

  75. Ware, J.A., Smith, M., Salzman, E.W. (1987) Synergism of platelet - aggregating agents. Role of elevation of cytoplasmic calcium. J. Clin. Invest. 80,267–271.

    PubMed  CAS  Google Scholar 

  76. Gazzaniga, P.P., Di Macco, G., La Mancusa, R., Oddi, A., Pappalardo, G., Pulcinelli, F.M., Reggio, D. (1988) In vitro enhancement of human platelet aggregation by somatostatin. Experientia 44,892–894.

    PubMed  CAS  Google Scholar 

  77. Siess, W., Lapetina, E.G. (1989) Platelet aggregation induced by alpha2- adrenoceptor and protein kinase C activation. Biochem. J.263,377–385.

    PubMed  CAS  Google Scholar 

  78. Verbeuren, T.J., Jordaens, F.H., Zonnekeyn, L.L, Van Hove, C.E., Coene, M.C., Herman, A.G. (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium - dependent and endothelium - independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ. Res. 58,552–564.

    PubMed  CAS  Google Scholar 

  79. Sreeharan, N., Jayakody, R.L., Senaratne, M.P.J., Thomson, A.B.R., Kappagoda, C.T. (1986) Endothelium - dependent relaxation and experimental atherosclerosis in rabbits. Can. J. Physiol. Pharmacol. 64,1451–1453.

    PubMed  CAS  Google Scholar 

  80. Shimokawa, H., Tomoike, H., Nabeyama, S., Yamamoto, H., Araki, H., Nakamura, M. (1983) Coronary artery spasm induced in atherosclerotic miniature swine. Science 221,560–561.

    PubMed  CAS  Google Scholar 

  81. Shimokawa, H., Vanhoutte, P.M. (1989) Hypercholesterolemia causes generalized impairment of endothelium - dependent relaxation to aggregating platelets in porcine arteries. J. Am. Coll. Cardiol. 13,1402–1408.

    PubMed  CAS  Google Scholar 

  82. Jayakody, L., Kappagoda, T., Senaratne, M.P.J., Thomson, A.B.R. (1988) Impairment of endothelium - dependent relaxation. an early marker for atherosclerosis in the rabbit. Br. J. Pharmacol. 94,335–346.

    PubMed  CAS  Google Scholar 

  83. Sellke, F.W., Armstrong, M.L., Harrison, D.G. (1990) Endothelium - dependent vascular relaxation is abnormal in the coronary microcirculation of the atherosclerotic primates. Circulation 81,1586–1593.

    PubMed  CAS  Google Scholar 

  84. Bossaller, C., Habib, G.B., Yamamoto, H., Williams, C., Wells, S., Henry, P.D. (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5’- monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J. Clin. Invest. 79,170–174.

    PubMed  CAS  Google Scholar 

  85. Forstermann, U., Mugge, A., Alheid, U., Haverich, A., Frolich, J. (1988) Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ. Res. 62,185–190.

    PubMed  CAS  Google Scholar 

  86. Chester, A.H., O’Neil, G.S., Moncada, S., Tadjkarimi, S., Yacoub, M.H. (1990) Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 336,897–900.

    PubMed  CAS  Google Scholar 

  87. Barrett, M.L., Willis, A.L., Vane, J.R. (1989) Inhibition of platelet - derived mitogen release by nitric oxide (EDRF). Agents and Actions 27,488–491.

    PubMed  CAS  Google Scholar 

  88. Ross, R., Glomset, J.A. (1976) The pathogenesis of atherosclerosis (First of two parts). New Engl. J. Med. 295,369–377.

    PubMed  CAS  Google Scholar 

  89. Ross, R., Glomset, J.A. (1976) The pathogenesis of atherosclerosis (Second of two parts). New Engl. J. Med. 295,420–425.

    PubMed  CAS  Google Scholar 

  90. Rosenblum, W.I., Nelson, G.H., Povlishock, J.T. (1987) Laser - induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse. Circ. Res. 60,169–176.

    PubMed  CAS  Google Scholar 

  91. Luscher, T.F., Yang, Z., Diederich, D., Buhler, F.R. (1989) Endothelium-derived vasoactive substances: Potential role in hypertension, atherosclerosis, and vascular occlusion. J. Cardiovasc. Pharmacol. 14,S63–S69.

    PubMed  Google Scholar 

  92. May, G.R., Crook, P., Moore, P.K., Page, C.P. (1991) The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation of the rabbit. Br. J. Pharmacol. 102,759–763.

    PubMed  CAS  Google Scholar 

  93. Cedro Ceremuzynska, K., Lembowicz, K., Pytel, B. NG-monomethyl-L-arginine increases platelet deposition on damaged endothelium in vivo. A scanning electron microscopy study, in preparation.

    Google Scholar 

  94. Corrigan Jr, J.J., Ray, W., May, N. (1968) Changes in the blood coagulation system associated with septicemia. New. Engl. J. Med. 279,851–856.

    PubMed  Google Scholar 

  95. Van Deventer, S.J.H., Buller, H.R., Ten Cate, J.W., Sturk, A., Pauw, W. (1988) Endotoxaemia: an early prediction of septicaemia in febrile patients. Lancet ii,605–609.

    Google Scholar 

  96. Suffredini, A.F., Fromm, R.E., Parker, M.M., Brenner, M., Kovacs, J. A., Wesley, R.A., Parrillo, J.E. (1989) The cardiovascular response of normal humans to the administration of endotoxin. New. Engl. J. Med. 321,280–287.

    PubMed  CAS  Google Scholar 

  97. Suffredini, A.F., Harpel, P.C., Parillo, J.E. (1989) Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. New Engl. J. Med. 320,1165–1172.

    PubMed  CAS  Google Scholar 

  98. Deventer, S.J.H., Buller, H.R., ten Cate, J.W., Aarden, L.A., Hack, C.E., Sturk, A. (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76,2520–2526.

    PubMed  Google Scholar 

  99. Bhargava, M., Kumari, S., Bhargava, S.K. (1978) Impairment of platelet function in neonatal septicaemia. Indian J. Med. Res. 68,964–969

    PubMed  CAS  Google Scholar 

  100. Anaya- Galindo, R., Poucel, S., Ponton, Y.G.L. (1980) Thrombocytopathy possibly due to sepsis. A new clinical entity. Rev. Invest. (Mex.) 32,391–399.

    CAS  Google Scholar 

  101. Saba, H.I., Saba, S.R., Morelli, G., Harmann, R.C. (1984) Endotoxin - mediated inhibition of human platelet aggregation. Thromb. Res. 34,19–33.

    PubMed  CAS  Google Scholar 

  102. Davis, R.B., Johnson, M.F. (1986) Effects of bacterial endotoxin and platelet activating factor (PAF) on human platelet aggregation in native whole blood. Thromb. Res. 44,565–573.

    PubMed  CAS  Google Scholar 

  103. Radomski, M.W., Palmer, R.M.J, Moncada, S. (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 87,10043–10047.

    PubMed  CAS  Google Scholar 

  104. Rees, D.D., Cellek, S., Palmer, R.M.J., Moncada, S. (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem. Biophys. Res. Commun. 173,541–547.

    PubMed  CAS  Google Scholar 

  105. Remuzzi, G.(1988) Bleeding in renal failure. Lancet ii,1205–1208.

    Google Scholar 

  106. Remuzzi, G., Perico, N., Zoja, C., Corna, D., Macconi, D., Vigano G. (1990) Role of endothelium - derived nitric oxide in the bleeding tendency of uremia. J. Clin. Invest. 86,1768–1771.

    PubMed  CAS  Google Scholar 

  107. Barbul, A. (1986) Arginine: biochemistry, physiology, and therapeutic implications. J. Parenteral Enteral Nutr. 10,227–238.

    CAS  Google Scholar 

  108. Glass, R.E., Goode, A.W., Houghton, B.J., Rowell, L.W. (1986) Plasma arginine in cancer of the gastrointestinal tract: effect of surgical treatment. Gut 27,844–848.

    PubMed  CAS  Google Scholar 

  109. Van Haeften, T.W., Konings, C.H. (1989) Arginine pharmacokinetics in humans assessed with an enzymatic assay adapted to a centrifugal analyzer. Clin. Chem. 35,1024–1026.

    PubMed  Google Scholar 

  110. Konings, C.H. (1980) A kinetic procedure for the estimation of arginine in serum using arginine kinase. Clin. Chim. Acta 176,185–194.

    Google Scholar 

  111. Villaneuva, V.R., Giret, M. (1980) Human platelet arginase. Mol. Cel. Biochem. 33,97–100.

    Google Scholar 

  112. Baydoun, A.R., Emery, P.W., Pearson, J.D., Mann, G.E. (1990) Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem. Biophys. Res. Commun. 173,940–948.

    PubMed  CAS  Google Scholar 

  113. Caren, R., Corbo, L. (1973) Response of plasma lipids and platelet aggregation to intravenous arginine. Proc. Soc. Exp. Biol. Med. 143,1067–1071.

    PubMed  CAS  Google Scholar 

  114. Houston, D.S., Gerrard, J.M., McCrea, J., Glover, S., Butler, A.M. (1983).The influence of amines on various platelet responses. Biochim. Biophys. Acta 734,267–273.

    PubMed  CAS  Google Scholar 

  115. Girerd, X.J., Hirsch, A.T., Cooke, J.P., Dzau, V.J., Creager, M.A. (1990) L -arginine augments endothelium-dependent vasodilatation in cholesterol-fed rabbits. Circulation Res. 67,1301–1308.

    PubMed  CAS  Google Scholar 

  116. Rees, D.D., Palmer, R.M.J., Hodson, H.F., Moncada, S. (1989) A specific inhibitor of nitric oxide formation from L- arginine attenuates endothelium - dependent relaxation. Br. J. Pharmacol. 96,418–424

    PubMed  CAS  Google Scholar 

  117. Palmer, R.M.J., Rees, D.D., Ashton, D.S., Moncada, S. (1988) Larginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 153,1251–1256.

    PubMed  CAS  Google Scholar 

  118. Moncada, S., Palmer, R.M.J. (1990) The L- arginine pathway in the vessel wall. In: Nitric oxide from l-arginine. A bioregulatory system. S. Moncada, E.A. Higgs (eds.) Elsevier Science Publishers B.V.(Biomedical Division), pp.19–33.

    Google Scholar 

  119. Rees, D.D., Schulz, R., Hodson, H.F., Palmer, R.M.J., Moncada, S. (1990) Identification of some novel inhibitors of the vascular nitric oxide synthase in vivo and in vitro. In: Nitric oxide from L - arginine. A bioregulatory system. S. Moncada E.A. Higgs (eds.) Elsevier Science Publishers B.V. (Biomedical Division), pp.485–487.

    Google Scholar 

  120. Rees, D.D., Palmer, R.M.J., Moncada, S. (1989) Role of endothelium - derived nitric oxide in the regulation of blood pressure. Proc. Natl. Acad. Sci. USA 86,3375–3378.

    PubMed  CAS  Google Scholar 

  121. Valiance, P., Collier, J., Moncada, S. (1989) Effect of endothelium - derived nitric oxide on peripheral arteriolar tone in man. Lancet ii,997–1000.

    Google Scholar 

  122. Valiance, P., Collier, J., Moncada, S. (1989) Nitric oxide synthesised from L -arginine mediates endothelium-dependent dilatation in human veins in vivo. Cardiovasc. Res. 23,1053–1057.

    Google Scholar 

  123. Gryglewski, R.J., Palmer, R.M.J., Moncada, S. (1986) Superoxide anion is involved in the breakdown of endothelium - derived vascular relaxing factor. Nature 320,454–456.

    PubMed  CAS  Google Scholar 

  124. Rubanyi, G.M., Vanhoutte, P.M. (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. 250,H822–H827.

    PubMed  CAS  Google Scholar 

  125. Martin, W., Villani, G.M., Jothianandan, D,. Furchgott, R.F. (1985) Selective blockade of endothelium - dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232,708–716.

    PubMed  CAS  Google Scholar 

  126. Valiance, P., Benjamin, N., Collier, J. (1988) Erythropoietin, haemoglobin, and hypertensive crisis. Lancet ii,1107.

    Google Scholar 

  127. Born G.V.R. (1980) Haemodynamic and biochemical interactions in intravascular platelet aggregation. In : Blood cells and vessel walls:functional interactions, Ciba Foundation Symposium 71, Elsevier Amsterdam, pp.61–77.

    Google Scholar 

  128. Radomski, M.W., Gryglewski, R.J. (1989) Physiological role of megakaryocyte - platelet axis in vascular haemostasis. In: Cell: ultrastrucuture and function vol 4, J. Kawiak, Z. Osuchowska A. Przelecka (eds.) Panstwowe Wydawnictwo Naukowe Warszawa, pp.111–148, in Polish.

    Google Scholar 

  129. Jansen, W., Prenze, R., Kumper, H., Tauchert, M. (1990) Interval treatment of coronary artery disease with sustained-release isosorbide -5- mononitrate. Am. J. Cardiol. 65,16J–22J.

    PubMed  CAS  Google Scholar 

  130. Needleman, P., Corr, P.B., Johnson Jr, E.M. (1985) Drugs used for the treatment of angina: organic nitrates, calcium channel blockers, and beta-adrenergic antagonists. In: The pharmacological basis of therapeutics, A. Goodman Gilman, L.S. Goodman, T.W. Rail T, F. Murad (eds.), Macmillan Publishing Company New York, pp. 806–826.

    Google Scholar 

  131. Fuster, V., Badimon, L., Badimon, J., Adams, P.C., Turitto, V., Chesebro, J.H. (1987) Drugs interfering with platelet functions: mechanisms and clinical relevance. In: Thrombosis and Haemostasis 1987 M. Verstraete, J. Vermylen, R. Lijnen, J. Arnout (eds.) Leuven University Press, pp. 349–418.

    Google Scholar 

  132. Feelisch, M., Noack, E.A. (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur. J. Pharmacol. 139,19–30.

    PubMed  CAS  Google Scholar 

  133. Feelisch, M., Noack, E. (1987) Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur. J. Pharmacol. 142,465–469.

    PubMed  CAS  Google Scholar 

  134. Feelisch, M. Experimentelle Untersuchungen zum intrazellularen Wirkungsmechanismus der Nitrovasodilatatoren and der endothelabhangigen Gefassregulation. Beweis fur Bildung von Stickoxid (NO) als gemeinsamem, intermediarem Wirkungsvermittler. Ph.d thesis, Dusseldorf 1988; in German.

    Google Scholar 

  135. Gerzer, R., Karrenbrock, B., Siess, W, Heim, J.M. (1988) Direct comparison of the effects of nitroprusside, SIN 1, and various nitrates on platelet aggregation and soluble guanylate cyclase activity. Thromb. Res. 52,11–21.

    PubMed  CAS  Google Scholar 

  136. Loscalzo, J. (1985) N- acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J. Clin. Invest. 76,703–708.

    PubMed  CAS  Google Scholar 

  137. Basista, M., Grodzinska, L., Swies, J. (1985) The influence of molsidomine and its active metabolite SIN-1 on fibrinolysis and platelet aggregation. Thromb. Haemost. 54,746–749.

    PubMed  CAS  Google Scholar 

  138. Bredin, H.K., Weichert, W. (1987) Inhibition of platelet thrombus formation in rat mesenteric vessels by molsidomine and SIN-1. Path. Biol. 35,223–225 (in French).

    Google Scholar 

  139. Just, M., Martorana, P.A., Nitz, R.E. (1987) Inhibition of platelet function in animals by molsidomine. Path. Biol. 35,226–228 (in French).

    Google Scholar 

  140. Reden, J. (1990) Molsidomine. Blood Vessels 27,282–294.

    PubMed  CAS  Google Scholar 

  141. Wautier, J.L., Weill, D., Kadeva, H., Maclouf, J., Soria, C. (1989) Modulation of platelet function by SIN-1A, a metabolite of molsidomine. J. Cardiovasc. Pharmacol. 14,S111–S114.

    PubMed  CAS  Google Scholar 

  142. Lam, J.Y.T., Chesebro, J.H., Fuster, V. (1988) Platelets, vasoconstriction, and nitroglycerin during arterial wall injury. A new antithrombotic role for an old drug. Circulation 78,712–716.

    PubMed  CAS  Google Scholar 

  143. Hogan, J.C., Lewis, M.J., Henderson, A.H. (1989) Glyceryl trinitrate and platelet aggregation: effects of N- acetyl-cysteine. Br. J. Clin. Pharmacol. 27,617–619.

    PubMed  CAS  Google Scholar 

  144. Ritter, J.M., Benjamin, N., Doktor, H.S., Barrow, S.E., Mant, T.G. K., Schey, S., Stewart-Long, P. (1990) Effects of selective thromboxane antagonist (GR32191B) and of glyceryl trinitrate on bleeding time in man. Br. J. Clin. Phamacol. 29,431–436.

    CAS  Google Scholar 

  145. Gebalska, J. (1990) Platelet adhesion and aggregation in relation to clinical course of acute myocardial infarction. M.D. thesis, Warsaw (in Polish).

    Google Scholar 

  146. Benjamin, N., Dutton, J.N., Ritter, J.M. (1991) Inhibition of platelet aggregation by vascular smooth muscle cells and glyceryl trinitrate-evidence for generation of NO. Br. J. Pharmacol., 102,847–850

    PubMed  CAS  Google Scholar 

  147. Forster, W. (1980) Significance of prostaglandins and thromboxane A2 for the mode of action of cardiovascular drugs. In: Advances in prostaglandin and thromboxane research vol.7 B. Samuelsson, P.W. Ramwell, R. Paoletti (eds.) Raven Press New York, pp. 609–618.

    Google Scholar 

  148. Levin, R.L., Weksler, B.B., Jaffe, E.A. (1982) The interaction of sodium nitroprusside with human endothelial cells and platelets: nitroprusside and prostacyclin synergistically inhibit platelet function. Circulation 66,1299–1307.

    PubMed  CAS  Google Scholar 

  149. De Caterina, R., Giannessi, D., Bernini, W., Mazzone, A. (1988) Organic nitrates: Antiplatelet effects of organic nitrates. Thromb. Haemost. 59,207–211.

    PubMed  Google Scholar 

  150. Bult, H., Fret, H.R.L., Herman, A.G. (1989) Interaction between SIN-1 and prostacyclin in inhibiting platelet aggregation. J. Cardiovasc. Pharmacol. 14,S120–S123.

    PubMed  CAS  Google Scholar 

  151. Willis, A.L., Smith, D.L., Loveday, M., Fulks, J., Lee, C.H., Hedley, L., Van Antwerp, D. (1989) Selective anti-platelet aggregation synergism between a prostacyclin-mimetic RS93427 and the nitrodilators sodium nitroprusside and glyceryl trinitrate. Br. J. Pharmacol. 98,1296–1302.

    PubMed  CAS  Google Scholar 

  152. Gryglewski, R.J., Korbut, R., Trabka-Janik, E., Zembowicz, A., Trybulec, M. (1989) Interaction between NO donors and iloprost in human vascular smooth muscle, platelets and leukocytes. J. Cardiovasc. Pharmacol. 14,S124–S128.

    PubMed  CAS  Google Scholar 

  153. Lidbury, P.S., Antunes, E., de Nucci, G., Vane, J.R. (1989) Interactions of iloprost and sodium nitroprusside on vascular smooth muscle and platelet aggregation. Br. J. Pharmacol. 98,1275–1280.

    PubMed  CAS  Google Scholar 

  154. Stamler, J.S., Vaughan, D.E., Loscalzo, J. (1989) Synergistic disaggregation of platelets by tissue-type plasminogen activator, prostaglandin El, and nitroglycerin. Circ. Res. 65,796–804.

    PubMed  CAS  Google Scholar 

  155. Sinzinger, H., Fitscha, P., O’Grady, J., Rauscha, F., Rogatti, W., Vane, J.R. (1990) Synergistic effect of prostaglandin El and isosorbide dinitrate in peripheral vascular disease. Lancet 335,627–628.

    PubMed  CAS  Google Scholar 

  156. Moncada, S., Radomski, M.W., Palmer, R.M.J. (1988) Endothelium - derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem. Pharmacol. 19,2495–2501.

    Google Scholar 

  157. Radomski, M.W., Esplugues, J.V. (1988) Regulatory properties of vascular endothelium: Focus on prostacyclin and endothelium - derived relaxing factor. Meth. and Find. Exptl. Clin. Pharmacol. 10,537–541.

    CAS  Google Scholar 

  158. Radomski, M.W., Palmer, R.M.J., Read, N.G., Moncada, S. (1988) Isolation and washing of human platelets with nitric oxide. Thromb. Res. 50,537–546.

    PubMed  CAS  Google Scholar 

  159. Radomski, M., Moncada, S. (1983). An improved method for washing of platelets with prostacyclin. Thromb.Res. 30,383–389.

    PubMed  CAS  Google Scholar 

  160. Yamaguchi, A., Suzuki, H., Tanoue, K., Yamazaki, H. (1986). Simple method of aequorin loading into platelets using dimethyl sulfoxide. Thromb.Res. 44,165–174.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Radomski, M.W., Moncada, S. (1991). Role of Nitric Oxide in Endothelial Cell - Platelet Interactions. In: Herman, A.G. (eds) Antithrombotics. Developments in Cardiovascular Medicine, vol 126. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3484-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3484-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5540-6

  • Online ISBN: 978-94-011-3484-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics