Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

Strategies and progress in modeling the unsaturated zone are described and, in particular, limitations on the use of the Richards equation. Problems of identifying soil parameters in the face of heterogeneity and preferential flow pathways are discussed. The advantages of parametric simplicity for certain modeling purposes are stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beven, K. J.: 1977, ‘Hillslope Hydrographs by the Finite Element Method,’ Earth Surface Processes 2, 13–28.

    Article  Google Scholar 

  • Beven, K. J.: 1989, ‘Changing Ideas in Hydrology: The Case of Physically-Based Models,’ J. Hydrology 105, 157–172.

    Article  Google Scholar 

  • Beven, K. J., and M. J. Kirkby: 1979, ‘A Physically-Based Variable Contributing Area Model of Basin Hydrology,’ Hydrological Sciences Bulletin 24, 303–325.

    Article  Google Scholar 

  • Beven, K. J., and P. F. Germann: 1981, ‘Water Flow in Soil Macropores. II. A Combined Flow Model,’ J. Soil Science 32, 15–29.

    Article  Google Scholar 

  • Beven, K. J., and R. T. Clarke: 1986, ‘On the Variation of Infiltration into a Homogeneous Soil Matrix Containing a Population of Macropores,’ Water Resources Research 22, 383–388

    Article  Google Scholar 

  • Beven, K. J., A. Calver, and E. M. Morris: 1987, ‘The Institute of Hydrology Distributed Model,’ Institute of Hydrology Report No. 97, Wallingford, Oxon.

    Google Scholar 

  • Binley, A. M., J. Elgy, and K. J. Beven: 1989, ‘A Physically-Based Model of Heterogeneous Hillslopes. I. Runoff Production,’ Water Resources Research 25(6), 1219–1226.

    Article  Google Scholar 

  • Brooks, R. H., and A. T. Corey: 1964, Hydraulic Properties of Porous Media,’ Colorado State University Hydrology Papers, 3, 27 pp.

    Google Scholar 

  • Calder, I. R., R. J. Harding, and P. T. W. Rosier: 1983, ‘An Objective Assessment of Soil Moisture Deficit Models,’ J. Hydrology 60, 329–355.

    Article  Google Scholar 

  • Calver, A., and W. L. Wood: 1989, ‘On the Discretisation and Cost Effectiveness of the Finite Element Solution for Hillslope Subsurface Flow,’ J. Hydrology 110, 165–179.

    Article  Google Scholar 

  • Campbell, G. S.: 1974, ‘A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data,’ Soil Science 117, 311–314.

    Article  Google Scholar 

  • Charbeneau, R. J.: 1988, ‘Liquid Moisture Redistribution: Hydrologic Simulation and Spatial Variability,’ in H. J. Morel-Seytoux (ed.), Unsaturated Flow in Hydrologic Modelling,NATO ASI Series C, v 275, Reidel, 127–160.

    Google Scholar 

  • Clapp, R. B.: 1982, ‘A Wetting-Front Model of Soil Water Dynamics,’ Unpublished PhD Thesis, University of Virginia, Charlottesville.

    Google Scholar 

  • Clapp, R. B., and G. M. Hornberger: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties,’ Water Resources Research 14, 601–604.

    Article  Google Scholar 

  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn: 1984, ‘A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils,’ Water Resources Research 20, 682–690.

    Article  Google Scholar 

  • Crawford, N. H., and R. K. Linsley: 1966, ‘Digital Simulation in Hydrology,Stanford Watershed Model IV’ Department of Civil Engineering, Stanford University, Technical Report No. 39.

    Google Scholar 

  • Dagan, G., and E. Bresler: 1983, ‘Unsaturated Flow in Spatially-Variable Fields. 1. Derivation of Models of Infiltration and Redistribution,’ Water Resources Research 19, 413–420.

    Article  Google Scholar 

  • Davidson, M. R.: 1985, ‘Asymptotic Behaviour of Infiltration in Soils Containing Cracks or Holes,’ Water Resources Research 21, 1345–1353.

    Article  Google Scholar 

  • Dawdy, D. R., and T. O’Donnell: 1965, ‘Mathematical Models of Catchment Behaviour,’ J. Hydraul. Div.,ASCE 91, 123–137.

    Google Scholar 

  • Feddes, R. A., S. P. Neuman, and E. Bresler: 1975, ‘Finite Element Analysis of TWO-Dimensional Flow in Soils Considering Water Uptake by Roots. H. Field Applications,’ Soil Sci. Soc. Amer. Proc. 39, 231.

    Article  Google Scholar 

  • Freeze, R. A.: 1971, ‘Three Dimensional Transient Saturated-Unsaturated Flow in a Groundwater Basin,’ Water Resources Research 7, 347–366.

    Article  Google Scholar 

  • Freeze, R. A.: 1972, ‘Role of Subsurface Flow in Generating Surface Runoff. 2. Upstream Source Areas,’ Water Resources Research 8, 1272–1283

    Article  Google Scholar 

  • Gardner, C. M. K., and J. P. Bell: 1980, ‘Comparison of Measured Soil Moisture Deficits With Estimates by MORECS,’ IAHS Publication No. 130, 337–341.

    Google Scholar 

  • Green, D. W., H. Dabiri, C. F. Weinaug, and R. Prill: 1970, ‘Numerical Modelling of Unsaturated Groundwater Flow and Comparison of the Model to a Field Experiment,’ Water Resources Research 6, 862–874.

    Article  Google Scholar 

  • Hoogmoed, W. D., and J. Bourn. 1980, ‘A Simulation Model for Predicting Infiltration into Cracked Soil,’ Soil Sci. Soc. Amer. J. 44, 458–461.

    Article  Google Scholar 

  • Huyakorn, P. S., E. P. Springer, V. Guvanasen, and T. D. Wadsworth: 1986, ‘A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media,’ Water Resources Research 22, 1790–1808.

    Article  Google Scholar 

  • Jensen, K. H., and T. Jønch-Clausen: 1982, ‘Unsaturated Flow and Evapotranspiration Modelling as a Component of the European Hydrological System (SHE),’ in V. P. Singh, (ed.), Modelling Components of the Hydrologic Cycle,Water Resource Publications (P.O. Box 2841, Littleton, CO 80161–2841, U.S.A.), 235–252.

    Google Scholar 

  • Ledoux, E., G. Girard, and J. P. Villeneauve: 1984, ‘Proposition d’ un Modèle Couplé Pour la Simulation Conjointe des Écoulements de Surface et des Ecoulements Souterrains Sur Un Bassin Hydrologique,’ La Houille Blanche 1/2, 1984.

    Google Scholar 

  • Luthin, J. N., A. Orhun, and G. S. Taylor: 1975, ‘Coupled Saturated-Unsaturated Transient Flow in Porous Media: Experimental and Numeric Model,’ Water Resources Research 11, 973–978.

    Article  Google Scholar 

  • Luxmoore, R. J., T. Grizzard, and M. R. Patterson: 1981, ‘Hydraulic Properties of Fullerton Cherty Silt Loam,’ Soil Sci. Soc. Amer. J. 45, 692–698.

    Article  Google Scholar 

  • Milly, P. C. D.: 1982, ‘Moisture and Heat Transport in Hysteretic Inhomogeneous Porous Media: A Matric Head-based Formulation and a Numerical Model,’ Water Resources Research 18, 489–498.

    Article  Google Scholar 

  • Milly, P. C. D.: 1986, ‘An Event-based Simulation Model of Moisture and Energy Fluxes at a Bare Soil Surface,’ Water Resources Research 22, 1680–1692.

    Article  Google Scholar 

  • Morel-Seytoux, H. J.: 1988, ‘Recipe for Simple But Physically-based Modeling of the Infiltration and Local Runoff Processes,’ in H. J. Mortel-Seytoux, and D. G. DeCoursey (eds.), Proc. 8th AGU Front Range Branch Hydrology Days, 226–247, Hydrology Days Publications, Fort Collins, CO.

    Google Scholar 

  • Morel-Seytoux, H. J., and J. Khanji: 1974, ‘Derivation of an Equation of Infiltration,’ Water Resources Research 10, 794–800.

    Article  Google Scholar 

  • Mualem, Y.: 1977, ‘Extension of the Similarity Hypothesis Used for Modelling Soils Characteristics,’ Water Resources Research 13, 773–780.

    Article  Google Scholar 

  • Mualem, Y.: 1984, ‘Prediction of the Soil Boundary Wetting Curve,’ Soil Science 137, 379–390

    Article  Google Scholar 

  • Narasimhan, T. N., and P. A. Witherspoon: 1977, ‘Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media. I. Theory,’ Water Resources Research 13, 657–664.

    Article  Google Scholar 

  • Neuman, S. R: 1973, ‘Saturated-Unsaturated Seepage by Finite Elements,’ J. Hydraul. Div.,ASCE 99, 2233–2250.

    Google Scholar 

  • Nieber, J. L., and M. F. Walter: 1981, ‘Two-dimensional Soil Moisture Flow in a Sloping Rectangular Region: Experimental and Numerical Studies,’ Water Resources Research 17, 1722–1730.

    Article  Google Scholar 

  • Philip, J. R.: 1957, ‘The Theory of Infiltration. 4. Sorptivity and Algebraic Infiltration Equations,’ Soil Science 84, 257–264.

    Article  Google Scholar 

  • Rawls, W. J., and D. L. Brakensiek: 1982, ‘Estimating Soil Water Retention From Soil Properties,’ J. Irrig. Drain.,ASCE 108, 166–171.

    Google Scholar 

  • Rawls, W. J., and D. L. Brakensiek: 1988, ‘Estimation of Soil Hydraulic Properties,’ in H. J. Morel-Seytoux (ed.),Unsaturated Flow in Hydrologic Modelling, Reidel, 275–300.

    Google Scholar 

  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxton: 1982, ‘Estimation of Soil Water Properties,’ Trans. Amer. Sco. Agric. Eng. 25, 1316–1320, 1328.

    Google Scholar 

  • Richards, L. A.: 1931, ‘Capillary Conduction of Liquids Through Porous Mediums,’ Physics 1, 318–333.

    Article  Google Scholar 

  • Rulon, J. J., R. Rodway, and R. A. Freeze: 1985, ‘The Development of Multiple Seepage Faces on Layered Slopes,’ Water Resources Research 21, 1625–1636.

    Article  Google Scholar 

  • Sharma, M. L., R. J. Luxmoore, R. De Angelis, R. C. Ward, and G. T. Yeh: 1987, ‘Subsurface Water Flow Simulated for Hillslopes With Spatially Dependent Soil Hydraulic Characteristics,’ Water Resources Research 23, 1523–1530.

    Article  Google Scholar 

  • Smith, R. E., and V A. Ferreira: 1989, ‘A Comparison of Unsaturated Zone Model Components,’ in H. J. Morel-Seytoux (ed.), Unsaturated Flow in Hydrologic Modelling,NATO ASI Series C, v 275, Reidel, 391–412.

    Chapter  Google Scholar 

  • Smith, R. E., and J-Y. Parlange: 1978, ‘A Parameter-Efficient Hydrologic Infiltration Model,’ Water Resources Research 14, 533–538.

    Article  Google Scholar 

  • Van Genuchten, M. Th.: 1980, ‘Predicting the Hydraulic Conductivity of Unsaturated Soils,’ Proc. Soil Sci. Soc. Amer. 44, 892–898.

    Article  Google Scholar 

  • Yeh, T. C. J., L. W. Gelhar, and A. L. Gutjhar: 1985, ‘Stochastic Analysis of Unsaturated Flow in Heterogeneous Soils (2 Papers),’ Water Resources Research 21, 447–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beven, K. (1991). Infiltration, Soil Moisture, and Unsaturated Flow. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics