Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

The paper describes the different methods available for solving the problem of one-dimensional flood routing. Starting from the definition of the problem and the assumptions used to schematize the flood routing phenomenon, alternative methods are described in the light of different purposes for their use encountered in hydraulic or hydrological practices. Particular attention is given to simplified methods ranging from the so-called “hydrological models” to an intermediate model, known as PAB, which combines the simplicity of a hydrological model to the accuracy of a hydraulic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B.: 1966, An Introduction to the Method of Characteristics,American Elsevier.

    Google Scholar 

  • Abbott, M. B.: 1979, Computational Hydraulics, Pitman Advanced Publishing Program.

    Google Scholar 

  • Barnett, A. G.: 1976, ‘Numerical Stability in Unsteady Open Channel Flow Computations,’ Proc. Int. Symp. on “Unsteady Flow in Open Channels,”Newcastle upon Tyne.

    Google Scholar 

  • Becker, A., and E. Glos: 1970, ‘Stifenmodell zur Hochwasserwellenberechnung in Ausufernden Wasserlaufen,’ Wasserwirtschaft-Wassertechnik,20 Jg, H.l., Berlin.

    Google Scholar 

  • Chow, V. T.: 1959, Open Channel Hydraulics, McGraw Hill, New York.

    Google Scholar 

  • Chow, V. T.: 1964, Handbook of Applied Hydrology,McGraw Hill, New York.

    Google Scholar 

  • Ciriani, T. A., U. Maione, and J. R. Wallis: 1975, Mathematical Models for Surface Water Hydrology, John Wiley & Sons.

    Google Scholar 

  • Cooley, R. L., and S. A. Moin: 1976, ‘Finite Element Solution of Saint-Venant Equations,’ J. Hydraulic Div. ASCE 102(HY6), 759–775.

    Google Scholar 

  • Cunge, J. A.: 1969, ‘On the Subject of Flood Propagation Computation Method (Muskingum Method),’ Journal of Hydraulic Research 7, n. 2.

    Article  Google Scholar 

  • Cunge, J. A., F. M. Holly, and A. Verwey: 1980, Practical Aspects of Computational River Hydraulics, Pitman Advanced Publishing Program.

    Google Scholar 

  • Dooge, J. C. I.: 1973, ‘Linear Theory of Hydrologic Systems,’ Technical Bulletin n.1468, U.S. Dept. of Agriculture, Washington.

    Google Scholar 

  • Evangelisti, G.: 1961, ‘On the Numerical Solution of the Equations of Propagation by the Method of Characteristics,’ MECCANICA, n. 1/2.

    Google Scholar 

  • Franchini, M., and E. Todini: 1986, ‘Parabolic Models for Real-Time Control of Irrigation Canals,’ Proc. Int. Workshop on “The Role of Forecasting in Water Resources Planning and Management”,Bologna.

    Google Scholar 

  • Fread, D. L.: 1985, ‘Channel Routing,’ in M. G. Anderson, and T. P. Burt (eds.), Hydrological Forecasting,John Wiley and Sons Ltd.

    Google Scholar 

  • Goodrich, R. D.: 1931, ‘Rapid Calculation of Reservoir Discharge,’ Civil Eng. 1, 417–418.

    Google Scholar 

  • Greco, E, and L. Panattoni: 1975, ‘An Implicit Method to Solve Saint-Venant Equations,’ J. Hydraulic., n. 24, 171–185.

    Google Scholar 

  • Guanwu, X., and C. Zhaohui: 1988, ‘The System of Real-time Hydrological Information Processing and Flood Forecasting with PDP or VAX Series Computer,’ Hydrology, n. 4. Beijing.

    Google Scholar 

  • Hayami, S.: 1951, ‘On the Propagation of Flood Waves,’ Disaster Prevention Research Institute, Kyoto University.

    Google Scholar 

  • Henderson, E. M.: 1959, Open Channel Flow, McMillan Company, New York.

    Google Scholar 

  • Kalinin, G. P., and P. I. Miljukov: 1958, ‘Priblizenni Rascet Neustanovivsegosja Dvizenija Vodnych Mass,’ Trudy Centr. Inst. Progn., vyp. 55, Moskva.

    Google Scholar 

  • Lai, C.: 1967, ‘Computation of Transient Flows in Rivers and Estuaries by the Multiple-Reach Implicit Method,’ U.S. Geol. Survey Prof. Paper n. 575 D.

    Google Scholar 

  • Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus: 1949, Applied Hydrology,McGraw Hill Book Co., New York, pp. 502–530.

    Google Scholar 

  • Maddaus, W. O.: 1969, ‘A Distributed Representation of Surface Runoff, ’ Hydrodynamics Lab. Report n. 115, MIT, Cambridge, Massachussetts.

    Google Scholar 

  • McCarthy, G. T.: 1938, ‘The Unit Hydrograph and Flood Routing,’ Conf. of the North Atlantic Div. US Corps of Engineers,New London, Connecticut.

    Google Scholar 

  • Natale, L. E., and E. Todini: 1977, ‘A Constrained Parameter Estimation Technique for Linear Models in Hydrology,’ in Mathematical Models for Surface Water Hydrology, John Wiley & S., U.K., Chichester.

    Google Scholar 

  • Price, R. K.: 1973, ‘Flood Routing Methods for British Rivers,’ Rep. III, Hydraulic Research Station, Wallingford.

    Google Scholar 

  • Price, R. K.: 1973, ‘Variable Parameter Diffusion Methods for Flood Routing,’ Rep. INT 115, Hydraulic Research Station, Wallingford.

    Google Scholar 

  • Puls, L. G.: 1928, ‘Construction of Flood Routing Curves,’ House Document 185, US 70th Congress, 1st Session, Washington, DC, pp. 46–52.

    Google Scholar 

  • Societe Du Canal de Provence et D’amenagement de la Region Provencale: 1984, ‘Ecoulements Transitoires à Surface Libre: Modèle d’Hayami,‘ ref. FD/mp 40/84–240.

    Google Scholar 

  • Stoker, J. J.: 1957, Water Waves, Interscience Publ., New York.

    Google Scholar 

  • Tawatchai, T., and S. K. Manhandar: 1985, ‘Analytical Diffusion Model for Flood Routing,’ Journal of Hydraulic Engineering III, n. 3.

    Google Scholar 

  • Todini, E., and A. Bossi: 1986, ‘PAB (Parabolic and Backwater) an Unconditionally Stable Flood Routing Scheme Particularly Suited for Real-time Forecasting and Control,’ Institute of Hydraulic Construction, Pub. n. 1, Bologna.

    Google Scholar 

  • Tong, H.: 1983, Threshold Models in Non-linear Time Series Analysis; Lecture Notes in Statistics, n. 21, Springer-Verlag.

    Book  Google Scholar 

  • Wignyosukarto, B.: 1983, ’Bcoulement Transitoire en Canal - Application à la Regulation, Rapport de D.E.A. de Mecanique des Fluides, Ecole Nationale Superieure de Grenoble.

    Google Scholar 

  • W.M.O.: 1983, Guide to Hydrological Practices, Vol. 2, WMO-n. 168, Geneva.

    Google Scholar 

  • Zezulak, J.: 1984, ‘Deterministic Models II,’ International Postgraduate Training Courses in Hydrology, Prague.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Todini, E. (1991). Hydraulic and Hydrologic Flood Routing Schemes. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics