Skip to main content

Modeling of Saturated Flow and the Coupling of Surface and Subsurface Flow

  • Chapter
Recent Advances in the Modeling of Hydrologic Systems

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

Saturated flow may play an important role in the description of the flow regime in catchments. Most prominent examples are runoff generation from humid catchment with shallow soils and catchments which are subject to major groundwater development. Groundwater flow has been subject to extensive research in particular with respect to numerical solution techniques, and today models are available which may cover a variety of field problems. The interaction between surface and subsurface water is a problem of significant importance in water resource engineering, and approaches have been developed to accommodate these problems under the constraints of computer technology and field data availability. A brief review of methods developed in the recent years will be presented, along with examples from two case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen: 1986a, ‘An Introduction to the European Hydrological System - Système Hydrologique Européen, “SHE”, 1: History and Philosophy of a Physically-Based, Distributed Modelling System,’ J. Hydrol. 87, 45–69.

    Article  Google Scholar 

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen: 1986b, ‘An Introduction to the European Hydrological System - Système Hydrologique Européen, “SHE”, 2: Structure of a Physically-Based, Distributed Modelling System,’ J Hydrol. 87, 61–77.

    Article  Google Scholar 

  • Bear, J., and A. Verruijt: 1987, Modelling Groundwater Flow and Pollution,D. Reidel, Dordrecht.

    Book  Google Scholar 

  • Belmans, C., J. G. Wesseling, and R. A. Feddes: 1983, ‘Simulation Model of the Water Balance of a Cropped Soil: SWATRE,’ J. Hydrol. 63, 271–286.

    Article  Google Scholar 

  • Brutsaert, W, and A. I. El-Kadi: 1984, ‘The Relative Importance of Compressibility and Partial Saturation in Unconfined Groundwater Flow,’ Water Resour. Res. 20, 400–408.

    Article  Google Scholar 

  • Brutsaert, W, and A. I. El-Kadi: 1986, ‘Interpretation of an Unconfined Groundwater Flow Experiment,’ Technical Note, Water Resour. Res. 22(3), 419–422.

    Article  Google Scholar 

  • Chorley, D. W, and E. O. Frind: 1978, ‘An Iterative Quasi-Three-dimensional Finite Element Model for Heterogeneous Multiaquifer Systems,’ Water Resour. Res. 14(5), 943–952.

    Article  Google Scholar 

  • Cooley, R. L.: 1983, ‘Some New Procedures for Numerical Solution of Variably Saturated Flow Problems,’ Water Resour. Res. 19(5), 1271–1285.

    Article  Google Scholar 

  • Dunne, T., T. R. More, and C. H. Taylor: 1975, ‘Recognition and Prediction of Runoff Producing Zones in Humid Regions,’ Hydrol. Sci. Bull. 20, 305–327.

    Google Scholar 

  • Freeze, R. A.: 1971, ‘Three-Dimensional, Transient, Saturated-Unsaturated Flow in a Groundwater Basin,’ Water Resour. Res. 7(2), 347–366.

    Article  Google Scholar 

  • Frind, E. O.: 1979, ‘Exact Aquitard Response Functions for Multiple Aquifer Mechanics,’ Adv. in Water Resources 2, 77–82.

    Article  Google Scholar 

  • Gilding, B. H.: 1983, ‘The Soil-Moisture Zone in a Physically-Based Hydrologic Model,’ Adv. in Water Resources 6, 36–43.

    Article  Google Scholar 

  • Gillham, R. W: 1984, ‘The Capillary Fringe and its Effects on Water Table Response,’ J Hydrol. 67, 307–324.

    Article  Google Scholar 

  • Hansen, E., and M. Dyhr-Nielsen: 1983, ‘The Suså Project: Modelling for Water Resources Arrangement’, Nature and Resource 19(3), 10–18.

    Google Scholar 

  • Van der Heijde, P., Y. Bachmat, J. D. Bredehoeft, B. Andrews, D. Holtz, and S. Sebastian: 1985, Groundwater Management: The Use of Numerical Models. 2 Edn., American Geophysical Union, Washington, DC.

    Google Scholar 

  • Heliotis, E D., and C. B. DeWitt: 1987, ‘Rapid Water Table Responses to Rainfall in a Northern Peatland Ecosystem,’ Water Resources Bulletin 23(6).

    Google Scholar 

  • Herrera, I., and R. Yates: 1977, ‘Integrodifferential Equations for Systems of Leaky Aquifers and Applications, 3. A Numerical Method of Unlimited Applicability,’ Water Resour. Res. 13(4), 725–732.

    Article  Google Scholar 

  • Hillman, G. R., and J. P. Verschuren: 1988, ‘Simulation of the Effects of Forest Cover, and its Removal on Subsurface Water,’ Water Resour. Res. 24(2), 305–314.

    Article  Google Scholar 

  • Hooghoudt, S. B.: 1947, ‘Waarnemingen van Grondwaterstanden voor de Landbouw, Verslagen Technische Bijeenkomsten 1–6, Commissie voor Hydrologisch OnderzoekTNO. The Hague, 94–110 (published in 1952).

    Google Scholar 

  • Huyakorn, P. S., B. G. Jones, and P. F. Andersen: 1986a, ‘Finite Element Algorithms for Simulating Three-dimensional Groundwater Flow and Solute Transport in Multilayer Systems,’ Water Resour. Res. 22(3), 361–374.

    Article  Google Scholar 

  • Huyakorn, R S., E. V. Springer, V. Guvanasen, and T. D. Wadsworth: 1986b, ‘A Three-dimensional Finite Element Model for Simulating Water Flow in Variably Saturated Porous Media,’ Water Resour. Res. 22(13), 1790–1808.

    Article  Google Scholar 

  • Konikow, L. F., and J. D. Bredehoeft: 1978, ‘Computer Model of Two-dimensional Solute Transport and Dispersion in Groundwater,’ U.S. Geol. Survey Techniques of Water-Resources Inv,Book 7, Chap. C2.

    Google Scholar 

  • de Marsily, D.: 1986, Quantitative Hydrogeology, Academic Press, Inc.

    Google Scholar 

  • Morris, E. M.: 1980, ‘Forecasting Flood Flows in Grassy and Forested Basins Using a Deterministic Mathematical Model,’ Hydrological Forecasting (Proc. Oxford Symp.,April 1980),IAHS Publ. No. 129, pp. 247–255.

    Google Scholar 

  • Nieber, J. L., and M. F. Walter: 1981, ‘Two-dimensional Soil Moisture Flow in a Sloping Rectangular Region: Experimental and Numerical Studies,’ Water Resour. Res. 17(6), 1722–1730.

    Article  Google Scholar 

  • Neuman, S. P.: 1973, ‘Saturated-Unsaturated Seepage by Finite Elements,’ J. Hydraul. Div. Amer. Soc. Civil Eng. 99, 2233–2251.

    Google Scholar 

  • Pearce, A. J., M. K. Stewart, and M. G. Sklash: 1986, ‘Storm Runoff Generation in Humid Catchments 1. Where Does the Water Come From,’ Water Resour. Res. 22(8), 1263–1272.

    Article  Google Scholar 

  • Pikul, M. E, R. L. Street, and I. Remson: 1974, ‘A Numerical Model Based on Coupled One-dimensional Richards and Boussinesq Equations,’ Water Resour. Res. 10(2), 295–302.

    Article  Google Scholar 

  • Pikul, M. E, R. L. Street, and I. Remson: 1975, ‘Reply,’ Water Resour. Res. 11(3), 510.

    Article  Google Scholar 

  • Prickett, T. A., and C. G. Lonnquist: 1971, ‘Selected Digital Computer Techniques for Groundwater Evaluation,’ Illinois State Water Survey Bulletin 55.

    Google Scholar 

  • Refsgaard, J. C., and O. Stang: 1981, ‘An Integrated Groundwater/Surface Water Hydrological Model, Danish Committee for Hydrology, Report Suså H 13, 122 pp.

    Google Scholar 

  • Refsgaard, J. C., and E. Hansen: 1982a, ‘A Distributed Groundwater/Surface Water Model for the Suså Catchment, Part 1: Model Description,’ Nordic Hydrology 13(5), 299–310.

    Google Scholar 

  • Refsgaard, J. C., and E. Hansen: 1982b, ‘A Distributed Groundwater/Surface Water Model for the Suså Catchment, Part 2: Simulation of Streamflow Depletion Due to Groundwater Abstraction,’ Nordic Hydrology 13(5), 311–322.

    Google Scholar 

  • Rubin, J.: 1968, ‘Theoretical Analysis of Two-dimensional, Transient Flow of Water in Unsaturated and Partly Unsaturated Soils,’ Soil Sci. Soc. Amer. Proc. 32(5), 607–615.

    Article  Google Scholar 

  • Rushton, K. R., and K. S. Rathod: 1985, ‘Horizontal and Vertical Components of Flow Deduced from Groundwater Heads,’ J. Hydrol. 79, 261–278.

    Article  Google Scholar 

  • Thomas, R. G.: 1973, ‘Groundwater Models. Irrigation and Drainage, Spec. Pap. Food Agricultural Organis., No. 21, U.N., Rome.

    Google Scholar 

  • Vachaud, G., and M. Vauclin: 1975, ‘Comments on “A Numerical Model Based On Coupled One-dimensional Richards and Boussinesq Equations” by Mary E Pikul, Robert L. Street, and Irwin Remson,’ Water Resour. Res. 11(3), 506–509.

    Article  Google Scholar 

  • Verma, R. D., and W. Brutsaert: 1970, ‘Unconfined Aquifer Seepage by Capillary Flow Theory,’ J Hydraul. Div. Am. Soc. Civ. Eng. 96(HY6), 1331–1344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Storm, B. (1991). Modeling of Saturated Flow and the Coupling of Surface and Subsurface Flow. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics