Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

The evolution of hydrological system modeling is reviewed under two headings: descriptive modeling which aims to enhance our understanding of catchment system behavior, and prescriptive modeling which is directed towards the solution of engineering problems. Progress in descriptive physically based modeling has been initially slow but some catchment-scale models and modeling systems are now emerging. Although a large amount of effort has been invested in prescriptive modeling, this research has not followed any well defined development path, and there has been an excessive proliferation of models without achieving any real advances in predictive capacity. There has also been an excessive preoccupation with the pursuit of systems methodology as an end in itself. However, “technique-driven” research has now started to give way to a desire to gain a more fundamental understanding of causal mechanisms within the rainfall-runoff process. This new fundamentalist trend in hydrological system modeling holds exciting prospects for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen: 1986a, ‘An Introduction to the European Hydrological System - Système Hydrologique Européen, “SHE”, 1: History and Philosophy of a Physically-Based, Distributed Modelling System,’ J. Hydrol. 87, 45–59.

    Article  Google Scholar 

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen: 1986b, ‘An Introduction to the European Hydrological System - Système Hydrologique Européen, “SHE”, 2: Structure of a Physically-Based, Distributed Modelling System,’ J.Hydrol. 87, 61–77.

    Article  Google Scholar 

  • Alonso, C. V., and D. G. De Coursey: 1985, ‘Small Watershed Model,’in D. G. De Coursey (ed.), Proc. of the Natural Resources Modelling Symposium, Pingree Park, CO, USDA-ARS-30, pp. 40–46.

    Google Scholar 

  • Ammentorp, H. C., K. H. Jensen, T H. Christensen, and J. C. Refsgaard: 1986, ‘Solute Transport and Chemical Processes: The Present State of the Unsaturated Zone Component of the SHE Modelling System,’ Proc. Int. Conf. on Water Quality Modelling in the Inland Natural Environment, BHRA, Cranfield, pp. 187–197.

    Google Scholar 

  • Amorocho, J., and G. T. Orlob: 1961, ‘Nonlinear Analysis of Hydrologic Systems, ’Water Resources Center Contrib. 40, University of California, Los Angeles.

    Google Scholar 

  • Amorocho, J., and A. Brandstetter: 1971, ‘Determination of Nonlinear Functional Response Functions in Rainfall-Runoff Processes,’ Wat. Resour. Res. 7(5), 1087–1101.

    Article  Google Scholar 

  • Bathurst, J. C.: 1986a, ‘Physically-Based Distributed Modelling of an Upland Catchment Using the Système Hydrologique Européen,’ J. Hydrol. 87, 79–102.

    Article  Google Scholar 

  • Bathurst, J. C.: 1986b, ‘Sensitivity Analysis of the Système Hydrologique Européen for an Upland Catchment,’ J. Hydrol. 87, 103–123.

    Article  Google Scholar 

  • Betson, R. P.: 1964, ‘What is Watershed Runoff?,’ J Geophys. Res. 69(B), 1541–1552.

    Article  Google Scholar 

  • Betson, R. P., and J. B. Marius: 1969, ‘Source Areas of Storm Runoff,’ Wat. Resour. Res. 5(3), 574–582.

    Article  Google Scholar 

  • Bernier, P. Y.: 1982, ‘VSAS2: A Revised Source Area Simulator for Small Forested Basins, PhD Dissertation, University of Georgia, Athens, GA.

    Google Scholar 

  • Beven, K. J.: 1983, ‘Surface Water Hydrology - Runoff Generation and Basin Structure,’ Reviews of Geophysics and Space Physics 21(3), 721–730, U.S. National Report to International Union of Geodesy and Geophysics, 1979–1982, American Geophysical Union, Washington, DC.

    Google Scholar 

  • Beven, K. J.: 1985, ‘Distributed Models,’ in M. G. Anderson, and T. P. Burt (eds.), Hydrological Forecasting, John Wiley & Sons, Chichester, pp. 405–435.

    Google Scholar 

  • Beven, K. J.: 1987, ‘Towards a New Paradigm in Hydrology,’ in Water for the Future: Hydrology in Perspective,Intl. Assoc. Hydrol. Sci. Publ. No. 164, pp. 393–403.

    Google Scholar 

  • Beven, K. J.: 1989, ‘Changing Ideas in Hydrology - The Case of Physically-based Models,’J. Hydrol. 105(1/2), 157–172.

    Article  Google Scholar 

  • Beven, K. J., and M. J. Kirkby: 1979, ‘A Physically-Based Variable Contributing Area Model of Basin Hydrology,’ Hydrol. Sc. Bull.24(1), 3, 43–69.

    Article  Google Scholar 

  • Beven, K. J., R. Warren, and J. Zaoui: 1980, ‘SHE: Towards a Methodology for Physically-Based, Distributed Modelling in Hydrology,’ in Hydrological Forecasting, Intl. Ass. Hydrol. Sci., Pub. No. 129, pp. 133–137.

    Google Scholar 

  • Beven, K. J., A. Calver, and E. M. Morris: 1987, ‘The Institute of Hydrology Distributed Model,’ Report No. 98, Inst. of Hydrology, Wallingford, U.K.

    Google Scholar 

  • Beven, K. J., E. F. Wood, and M. Sivapalan: 1988, ‘On Hydrological Heterogeneity: Catchment Morphology and Catchment Response,’ J Hydrol. 100,353–375.

    Article  Google Scholar 

  • Box, G. E. P., and G. M. Jenkins: 1970, Time Series Analysis Forecasting and Control, Holden Day, San Francisco, pp. 553.

    Google Scholar 

  • Brakensiek, D. L.: 1967, ‘A Simulated Watershed Flow System for Hydrograph Prediction: A Kinematic Application,’ Proc. International Hydrology Symposium, Fort Collins, CO.

    Google Scholar 

  • Bree, T.: 1985, ‘Numerical Aspects of General Linear Analysis,’Unpublished PhD Thesis, Civil Engineering Department, University College, Dublin.

    Google Scholar 

  • Bruen, M.: 1985, ‘Black Box Methods of Systems Analysis Applied to the Modelling of Catchment Behaviour,’hed PhD Thesis, Civil Engineering Department, University College, Dublin.

    Google Scholar 

  • Calver, A., and W. L. Wood: 1989, ‘On the Discretization and Cost-Effectiveness of a Finite Element Solution for Hillslope Subsurface Flow,’ J Hydrol.110(1/2), 165–179.

    Article  Google Scholar 

  • Chiu, C. L. (ed.): 1978, ‘Applications of Kalman Filter to Hydrology, Hydraulics and Water Resources,’ University of Pittsburgh, Pittsburgh, PA, pp. 783.

    Google Scholar 

  • Clark, C. O.: 1945, ‘Storage and Unit Hydrograph,’ Trans. Am. Soc. Civ. Engrs.110, 1416–1446.

    Google Scholar 

  • Cooper, D. M., and E. F. Wood: 1982a, ‘Identification of Multivariate Time Series and Multivariate Input-Output Models,’Wat. Resour. Res. 18(4), 937–946.

    Article  Google Scholar 

  • Cooper, D. M., and E. F. Wood: 1982b, ‘Parameter Estimation of Multiple Input-Output Time Series Models: Application to Rainfall-Runoff Processes,’ Wat. Resour. Res. 18(5), 1352–1364.

    Article  Google Scholar 

  • Crawford, N. H., and R. K. Linsley: 1962, ‘The Synthesis of Continuous Streamflow Hydrographs on a Digital Computer, Tech. Report No. 12, Dept. of Civil Eng., Stanford University, CA.

    Google Scholar 

  • Crawford, N.H., and R. K. Linsley: 1966, ‘Digital Simulation in Hydrology: Stanford Watershed Model IV’ Report No. 39, Dept. of Civil Eng., Stanford University.

    Google Scholar 

  • Darcy, H.: 1856, Les Fontaines Publiques de la Ville de Dijon,Dalmost, Paris.

    Google Scholar 

  • Dawdy, D. R., and T. O’Donnell: 1965, ‘Mathematical Models of Catchment Behaviour,’ J. Hydraul. Div., Proc. Am. Soc. Civ. Engrs. 91(HY4), 123–127.

    Google Scholar 

  • Dee Steering Committee: 1977, ‘Dee Weather Radar and Real-time Hydrological Forecasting Project, Central Water Planning Unit, Reading, U.K.

    Google Scholar 

  • Dooge, J. C. I.: 1959, ‘A General Theory of the Unit Hydrograph,’ J Geophys. Res. 64(2), 241–256.

    Article  Google Scholar 

  • Dooge, J. C. I.: 1965, ‘Analysis of Linear Systems by Means of Laguerre Functions,’ J SIAM Control,Ser. A 2(3).

    Google Scholar 

  • Dooge, J. C. I.: 1973, ‘Linear Theory of Hydrologic Systems,’ Tech. Bull. U.S. Dept. of Agriculture, No. 1468, U.S. Govt. Printing Office, Washington, DC.

    Google Scholar 

  • Dooge, J. C. I.: 1986, ‘Looking for Hydrologic Laws,’ Wat. Resour. Res. 22(9), 465–585.

    Article  Google Scholar 

  • Dooge, J. C. I., and B. J. Garvey: 1978, ‘The Use of Meixner Functions in the Identification of Heavily Damped Systems,’ Proc. Roy. Irish Acad.,Sect. A 78(18).

    Google Scholar 

  • Dunne, T.: 1970, ‘Runoff Production in a Humid Area,’ Rep. ARS 41–160, Agr. Res. Serv., U.S. Dept. of Agr., Washington, DC, pp. 108.

    Google Scholar 

  • Dunne, T.: 1978, ‘Field Studies of Hillslope Flow Processes,’ in M. J. Kirby (ed.), Hillslope Hydrology, London, pp. 227–294.

    Google Scholar 

  • Eagleson, P. S., R. Mejia, and E March: 1966, ‘Computation of Optimum Realizable Unit Hydrographs,’ Wat. Resour. Res. 2(4), 755–764.

    Article  Google Scholar 

  • Fleming, G.: 1975, Computer Simulation Techniques in Hydrology, Environmental Science Series, Elsevier, NY, pp. 333.

    Google Scholar 

  • Freeze, R. A.: 1971, ‘Three-Dimensional, Transient, Saturated-Unsaturated Flow in a Groundwater Basin,’ Wat. Resour. Res.7(2), 347–366.

    Article  Google Scholar 

  • Freeze, R. A.: 1972a, ‘Role of Subsurface Flow in Generating Surface Runoff. 1. Baseflow Contributions to Channel Flow,’ Wat. Resour. Res. 8(3), 609–623.

    Article  Google Scholar 

  • Freeze, R. A.: 1972b, ‘Role of Subsurface Flow in Generating Surface Runoff. 2. Upstream Source Areas,’ Wat. Resour. Res. 8(5), 1272–1283.

    Article  Google Scholar 

  • Freeze, R. A.: 1978, ‘Mathematical Models of Hillslope Hydrology,’ in M. J. Kirkby (ed.), Hillslope Hydrology, Wiley, pp. 126–177.

    Google Scholar 

  • Freeze, R. A., and R. L. Harlan: 1969, ‘Blueprint for a Physically-Based, Digitally-Simulated Hydrologic Response Model,’ J. Hydrol. 9, 237–258.

    Article  Google Scholar 

  • Garrick, M., C. Cunnane, and J. E. Nash: 1978, ‘A Criterion of Efficiency for Rainfall-Runoff Models,’ J Hydrol. 36(3/4), 375–381.

    Article  Google Scholar 

  • Goldstein, J. D., and W. E. Larimore: 1980, ‘Application of Kalman Filtering and Maximum Likelihood Identification to Hydrologic Forecasting,’ Tech. Report, Analytic Science Corporation, Boston, MA. Henderson, E M.: 1966, Open Channel Flow, Macmillan, pp. 522.

    Google Scholar 

  • Henderson, E M., and R. A. Wooding: 1964, ‘Overland Flow and Groundwater Flow from a Steady Rainfall of Finite Duration,’ J Geophys. Res. 69(8), 1531–1540.

    Article  Google Scholar 

  • Hewlett, J. D., and A. R. Hibbert: 1963, ‘Moisture and Energy Conditions within a Sloping Soil Mass During Drainage,’ J. Geophys. Res. 68(4), 1081–1087.

    Article  Google Scholar 

  • Hewlett, J. D., and A. R. Hibbert: 1967, ‘Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas,’ in W. E. Sooper, and H. W. Lull (eds.), Forest Hydrology, Pergamon Press, Oxford, pp. 275–290.

    Google Scholar 

  • Hewlett, J. D., and W L. Nutter: 1970, ‘The Varying Source Area of Streamflow from Upland Basins,’ Proc. of the Symp. on Interdisciplinary Aspects of Watershed Management, Am. Soc. Civil Engrs., New York.

    Google Scholar 

  • Hewlett, J. D., and C. A. Troendle: 1975, ‘Non-Point and Diffused Water Source: A Variable Source Area Problem,’ in Watershed Management, Logan, Utah, Am. Soc. Civil Engrs., pp. 21–45.

    Google Scholar 

  • Horton, R. E.: 1933, ‘The Role of Infiltration in the Hydrologic Cycle,’ Trans. Am. Geophys. Union 14, 446–460.

    Google Scholar 

  • Horton, R. E.: 1938, ‘The Interpretation and Application of Runoff Plot Experiments with Reference to Soil Erosion Problems,’ Proc. Soil Sci. Soc. Am. 3, 340–349.

    Article  Google Scholar 

  • Huggins, L. E, and E. J. Monke: 1968, ‘A Mathematical Model for Simulating the Hydrologic Response of a Watershed,’ Wat. Resour. Res. 4(3), 529–539.

    Article  Google Scholar 

  • Hursh, C. R., and E. F. Brater: 1944, ‘Separating Storm-Hydrographs from Small Drainage Areas into Surface and Subsurface Flow,’ Trans. Am. Geophy. Union 22, 863–871.

    Google Scholar 

  • Hydraulics Research Ltd.: 1981, Design and Analysis of Urban Storm Drainage: The Wallingford Procedure,Vol. 1, Principles, Methods and Practice,pp. 173.

    Google Scholar 

  • Ibbitt, R. P.: 1970, ‘Systematic Parameter Fitting for Conceptual Models of Catchment Hydrology, ’ Unpublished PhD Thesis, Dept. of Civil Eng., Imperial College of Science and Technology, London.

    Google Scholar 

  • Izzard, C. E: 1946, ‘Hydraulics of Runoff from Developed Surfaces,’ Proc. Highway Research Board, 26th Annual Meeting.

    Google Scholar 

  • Jamieson, D. G., and J. C. Wilkinson: 1972, ‘River Dee Research Programme 3. A Short-Term Control Strategy for Multipurpose Reservoir Systems,’ Wat. Resour. Res. 8(4), 911–920.

    Article  Google Scholar 

  • Johnstone, D., and W. P. Cross: 1949, Elements of Applied Hydrology,Ronald Press Co., New York, pp. 270.

    Google Scholar 

  • Kibler, D. F., and D. A. Woolhiser: 1970, ‘The Kinematic Cascade as a Hydrologic Model,’ Hydrology Paper No. 39, Colorado State University.

    Google Scholar 

  • Klatt, P., and G. A. Schultz: 1981, ‘Improvement of Flood Forecasts by Adaptive Parameter Estimation,’ Proc. Int. Symp. on Rainfall Runoff Modelling,Water Resources Publications, Littleton, CO.

    Google Scholar 

  • Klemes, V.: 1986, ‘Dilettantism in Hydrology: Transition or Destiny,’ Wat. Resour. Res.22(9), 177s-188s.

    Article  Google Scholar 

  • Klemes, V: 1988, ‘A Hydrological Perspective,’ J. Hydrol. 100, 3–28.

    Article  Google Scholar 

  • Kraijenhoff, D. A., and R. J. Moll (eds.): 1986, River Flow Modelling and Forecasting, Reidel Pub. Co., Dordrecht, pp. 372.

    Book  Google Scholar 

  • Lambert, A. 0.: 1972, ‘Catchment Models Based on ISO-Functions,’ Jour. Inst. Water Engineers 26, 413.

    Google Scholar 

  • Lambert, A. O., and M. J. Lowing: 1980, ‘Flow Forecasting and Control on the River Dee,’ in Hydrological Forecasting, Intl. Ass. Hydrol. Sci. Publ. No. 129, pp. 525–534.

    Google Scholar 

  • Leclerc, G., and J. C. Schaake: 1973, ‘Methodology for Assessing the Potential Impact of Urban Development on Urban Runoff and the Relative Efficiency of Runoff Control Alternatives,’ Report No. 167, R. M. Parsons Lab., Dept. of Civ. Eng., MIT, Cambridge, MA.

    Google Scholar 

  • Liggett, J. A., and D. A. Woolhiser: 1967, ‘Difference Solutions of the Shallow-Water Equations,’ Jour. Eng. Mech. Div.,Proc. Am. Soc. Civ. Engrs. EM 2, 39–48.

    Google Scholar 

  • Lighthill, J., and G. B. Whitham: 1955,‘Kinematic Waves, I. Flood Movement in Long Rivers,’ Proc. Royal Soc. London (A)229, 281–316.

    Google Scholar 

  • Linsley, R. K.: 1982, ‘Rainfall-Runoff Models - an Overview,’ in V. P. Singh (ed.), Proc. Int. Symp. on Rainfall-Runoff Modelling,Water Resources Publications, Littleton, CO.

    Google Scholar 

  • Linsley, R. K., and W. C. Ackerman: 1942, ‘A Method of Predicting the Runoff from Rainfall,’ Trans. Am. Soc. Civ. Engrs. 107, 825–835.

    Google Scholar 

  • Lloyd-Davies, D. E.: 1906, ‘The Elimination of Storm Water from Sewerage Systems,’Proc. Inst. Civil Engrs. 164, 41–67.

    Google Scholar 

  • Mandeville, A. N., R E. O’Connell, J. V. Sutcliffe, and J. E. Nash: 1970, ‘River Flow Forecasting through Conceptual Models III. The Ray Catchment at Grendon Underwood,’ J. Hydrol. 11, 109.

    Article  Google Scholar 

  • McCarthy, G. T.: 1938, ‘The Unit Hydrograph and Flood Routing,’ Proc. Conf North Atlantic Division, US Army Corps of Engineers.

    Google Scholar 

  • Moore, R. J., and R. T. Clarke: 1981, ‘A Distribution Function Approach to Rainfall-Runoff Modelling,’ Wat. &sour. Res. 17(5), 1367–1382.

    Article  Google Scholar 

  • Morris, E. M.: 1979, ‘The Effect of the Small-Slope Approximation and Lower Boundary Conditions on Solution of the Saint-Venant Equations,’ J. Hydrol. 40(1/2), 31–47.

    Article  Google Scholar 

  • Morris, E. M.: 1980, ‘Forecasting Flood Flows in Grassy and Forested Basins Using a Deterministic Distributed Mathematical Model,’ in Hydrological Forecasting, Intl. Assoc. Hydrol. Sci. Publ. 129, pp. 247–255.

    Google Scholar 

  • Mulvaney, T. J.: 1851, ‘On the Use of Self-Registering Rain and Flood Gauges in Making Observations of the Relations of Rainfall and Flood Discharges in a Given Catchment,’ Trans. Inst. Civil Engrs. Ireland 1V(II), 19–33.

    Google Scholar 

  • Nash, J. E.: 1958, ‘The Form of the Instantaneous Unit Hydrograph,’ Intl. Assoc. Sci. Hydrol. 45, 114–121.

    Google Scholar 

  • Nash, J. E.: 1960, ‘A Unit Hydrograph Study, with Particular Reference to British Catchments,’ Proc. Inst. Civil Engrs. 17, 249–282.

    Article  Google Scholar 

  • Nash, J. E.: 1961, ‘A Linear Transformation of a Discharge Record,’ Proc. Ninth Convention, Intl. Ass. Hydr. Res. 3, 13.1–2.

    Google Scholar 

  • Nash, J. E., and J. V. Sutcliffe: 1970, ‘River Flow Forecasting through Conceptual Models. I - A Discussion of Principles,’ J Hydrol. 10, 282–290.

    Article  Google Scholar 

  • Nash, J. E., and B. I. Barsi: 1984, ‘Hybrid Model for Flow Forecasting on Large Catchments,’ J. Hydrol. 65(1–3), 125–137.

    Article  Google Scholar 

  • Natale, L., and E. Todini: 1977, ‘A Constrained Parameter Estimation Technique for Linear Models in Hydrology,’ in T. A. Ciriani, U. Maione, and J. R. Wallis (eds.), Mathematical Models for Surface Water Hydrology, John Wiley & Sons, Chichester, UK, pp. 109–147.

    Google Scholar 

  • Nemec, J.: 1985, Design and Management of Hydrological Forecasting Systems, D. Reidel, Dordrecht.

    Google Scholar 

  • Nemec, J.: 1986, ‘Design and Operation of Forecasting Operational Real-Time Hydrological Systems (FORTH),’ in D. A. Kraijenhoff, and J. R. Moll (eds.), River Flow Modelling and Forecasting, D. Reidel, Dordrecht, pp. 299–327.

    Chapter  Google Scholar 

  • O’Connell, P. E. (ed.): 1980, ‘Real-Time Hydrological Forecasting and Control,’ Institute of Hydrology, Wallingford, UK, pp. 264.

    Google Scholar 

  • O’Connell, P. E., G. P. Brunsdon, D. W. Reed, and P. G. Whitehead: 1986, ‘Case Studies in Real-Time Hydrological Forecasting from the UK,’ in D. A. Kraijenhoff, and R. Moll (eds.), River Flow Modelling and Forecasting, Reidel, Dordrecht, pp. 195–240.

    Chapter  Google Scholar 

  • O’Connell, P. E., and R. T. Clarke: 1981, ‘Adaptive Hydrological Forecasting - a Review,’ Bull. Intl. Ass. Hydrol. Sci. 26(2), 179–205.

    Article  Google Scholar 

  • O’Connell, P. E., J. E. Nash, and J. P. Farrell: 1970, ‘River Flow Forecasting Through Conceptual Models II. The Brosna Catchment at Ferbane,’ J. Hydrol. 10, 317–329.

    Article  Google Scholar 

  • O’Connor, K. M.: 1976, ‘A Discrete Linear Cascade Model for Hydrology,’ J. Hydrol. 29, 203–242.

    Article  Google Scholar 

  • O’Donnell, T.: 1960, ‘Instantaneous Unit Hydrograph Derivation by Harmonic Analysis,’ Intl. Ass. Hydrol. Sci. Publ. 51, 546–557.

    Google Scholar 

  • O’Donnell, T: 1986, ‘Deterministic Catchment Modelling,’ in D. A. Kraijenhoff, and R. J. Moll (eds.), River Flow Modelling and Forecasting, Reidel Pub. Co., Dordrecht, pp. 11–37.

    Chapter  Google Scholar 

  • O’Donnell, T, and R. P. Ibbitt: 1974, ‘Designing Conceptual Catchment Models for Automatic Fitting Methods,’ Intl. Ass. Hydrol. Sci. Publ. 101,461–475.

    Google Scholar 

  • O’Kelly, J. J.: 1955, ‘The Employment of Unit Hydrographs to Determine the Flows of Irish Arterial Drainage Channels,’ Proc. Inst. Civ. Engrs. Ireland 4(3), 365–412.

    Google Scholar 

  • Parkin, G. R, and R. Mackay: 1990, ‘A Framework for Assessing the Predictive Capability of Physically-Based Hydrological Models,’ Paper Presented at XV General Assembly, European Geophysical Society, Copenhagen, EGS Abstract Annales Geophysicae, Special Issue, p. 95.

    Google Scholar 

  • Penman, H. L.: 1961, ‘Weather, Plant and Soil Factors in Hydrology,’ Weather 16, 207–219.

    Article  Google Scholar 

  • Ragan, R. M.: 1968, ‘An Experimental Investigation of Partial Area Contributions,’ Intl. Assoc. of Sci. Hydrol. 76, 241–251.

    Google Scholar 

  • Rawitz, E., E. T. Engman, and G. D. Cline: 1970, ‘Use of Mass Balance Method for Examining the Role of Soils in Controlling Watershed Performance,’ Wat. Resour. Res. 6(4), 1115–1123.

    Article  Google Scholar 

  • Restrepo-Posada, J., and R. L. Bras: 1982, ‘Automatic Parameter Estimation of a Large Conceptual Rainfall-Runoff Model: A Maximum Likelihood Approach, Report No. 267, Dept. of Civil Eng., M.I.T., Cambridge, MA.

    Google Scholar 

  • Rockwood, D. M.: 1958, ‘Columbia Basin Stream Flow Routing Computer,’ Trans. Am. Soc. Civ. Engrs. 126(4), 32–56.

    Google Scholar 

  • Rockwood, D. M.: 1968, ‘Application of Streamflow Synthesis and Reservoir Regulation-SSARR-Program to Lower Mekong River,’ Intl. Assoc. Sci. Hydrol Publ. 80, 329–344.

    Google Scholar 

  • Rodriguez-Iturbe, I., and J. B. Valdes: 1979, ‘The Geomorphological Structure of Hydrologic Response,’ Wat. Resour. Res. 15(6), 1409–1420.

    Article  Google Scholar 

  • Rosenbrock, H. H.: 1960, ‘An Automatic Method of Finding the Greatest or Least Value of A Function,’ Comp. Jour. 3, 175–184.

    Article  Google Scholar 

  • Schaake, J. C., Jr.: 1970, ‘Deterministic Urban Runoff Model,’ Burban Water Syst. Inst., Colorado State University, Fort Collins.

    Google Scholar 

  • Schultz, G. A.: 1986, ‘Relationship between Theory and Practice of Real-Time River Flow Forecasting,’ in D. A. Kraijenhoff, and J. R. Moll (eds.), River Flow Modelling and Forecasting, Reidel Publ. Co., Dordrecht, pp. 181–193.

    Chapter  Google Scholar 

  • Sherman, L. K.: 1932, ‘Streamflow from Rainfall by Unit-Graph Method,’ Eng. News Record 108, 501–505.

    Google Scholar 

  • Smith, E G., and L. E. Brazil: 1980, ‘Real-Time Hydrologic Forecasting Using Estimation Theory and Computer Graphics,’ Proc. of the JACC Conf,San Francisco, CA, Aug.12–15, Vol. II, FA-6A.

    Google Scholar 

  • Smith, R. E., and D. A. Woolhiser: 1971, ‘Overland Flow on an Infiltrating Surface,’ Wat. Resour. Res. 7(4), 899–913.

    Article  Google Scholar 

  • Snyder, F. E.: 1961, ‘Matrix Operation in Hydrograph Computations,’TVA Res. Paper No. 1, Knoxville.

    Google Scholar 

  • Sorooshian, S., and J. A. Dracup: 1980, ‘Stochastic Parameter Estimation Procedures for Hydrologic Rainfall-Runoff Models: Correlated and Heteroscedastic Error Cases,’ Wat. Resour. Res. 16(2), 430–442.

    Article  Google Scholar 

  • Sorooshian, S., and V. K. Gupta: 1983, ‘Automatic Calibration of Conceptual Rainfall-Runoff Models: The Question of Parameter Observability and Uniqueness,’ Wat. Resour. Res. 19(1), 260–268.

    Article  Google Scholar 

  • Spolia, S. K., and S. Chander: 1974, ‘Modelling of Surface Runoff Systems by an ARMA Model,’ J. Hydrol. 22, 317–332.

    Article  Google Scholar 

  • Stephenson, G. R., and R. A. Freeze: 1974, ‘Mathematical Simulation of Subsurface Flow Contributions to Snowmelt Runoff, Reynolds Creek Watershed, Idaho,’ Wat. Resour. Res. 10(2), 284–298.

    Article  Google Scholar 

  • Sugawara, M.: 1961, ‘An Analysis of Runoff Structure About Several Japanese Rivers,’ Japanese J. Geophys. 2.

    Google Scholar 

  • TASC: 1980, ‘Application of Kalman Filtering and Maximum Likelihood Parameter Identification to Hydrologic Forecasting, ’ The Analysis Science Corp., Reading, MA.

    Google Scholar 

  • Todini, E.: 1978, ‘Mutually Interactive State Parameter (MISP) Estimation,’ in C. L. Chiu (ed.), Applications of Kalman Filter to Hydrology, Hydraulics and Water Resources,University of Pittsburgh, Pittsburgh, PA.

    Google Scholar 

  • Todini, E.: 1988, ‘Rainfall Runoff Modelling: Past, Present and Future,’ J. Hydrol. 100, 341–352.

    Article  Google Scholar 

  • Todini, E., P. E. O’Connell, and D. A. Jones: 1980, ‘Basic Methodology: Kalman Filter Estimation Problems,’ in P. E. O‘Connell (ed.), Real-time Hydrological Forecasting and Control,Institute of Hydrology, Wallingford, pp. 66–98.

    Google Scholar 

  • Todini, E., and J. R. Wallis: 1977, ‘Using CLS for Daily or Longer Period Rainfall Runoff Modelling,’ in T. A. Ciriani, U. Maione, and J. R. Wallis (eds.), Mathematical Models for Surface Water Hydrology,John Wiley and Sons, Chichester, pp. 149–168.

    Google Scholar 

  • Troendle, C. A.: 1985, ‘Variable Source Area Model,’ in M. G. Anderson, and T. P. Burt (eds.), Hydrological Forecasting, John Wiley & Sons, Chichester, pp. 347–403.

    Google Scholar 

  • USDA: 1980, ‘CREAMS: A Field Scale Model for Chemicals Runoff and Erosion for Agricultural Management Systems, USDA Conservation Research Report No. 26, pp. 643.

    Google Scholar 

  • Whipkey, R. Z.: 1965, ‘Subsurface Stormflow from Forested Slopes,’ Bull. Int. Assoc Sci. Hydrol. 10(2), 74–85.

    Article  Google Scholar 

  • Wicks, J. M., and J. C. Bathurst: 1990, ‘SHESED: A Physically-Based Distributed Sediment Yield Model for the SHE Hydrological Modelling System,’ Submitted for Publication to J Hydrol.

    Google Scholar 

  • Williams, B. J., and W W G. Yeh: 1982, ‘Parameter Estimation in Rainfall-Runoff Models,’ J Hydrol.

    Google Scholar 

  • Wilson, C. B., J. B. Valdes, and I. Rodriguez-Iturbe: 1979, ‘On the Influence of the Spatial Distribution of Rainfall on Storm Runoff,’ Wat. Resour. Res. 15, 321–328.

    Article  Google Scholar 

  • Wood, E. F. (ed.): 1980, Recent Development in Real-Time Forecastingl Control of Water Resources Systems,Pergamon, Oxford.

    Google Scholar 

  • Wooding, R. A.: 1965 ‘A Hydraulic Model for the Catchment-Stream Problem, 1. Kinematic Wave Theory,’ J Hydrol. 3(3/4), 254–267.

    Article  Google Scholar 

  • Woolhiser, D. A.: 1969, ‘Overland Flow on a Converging Surface,’ Trans. Am. Soc. Ag. Engrs. 12,460–462.

    Google Scholar 

  • Woolhiser, D. A.: 1973, ‘Hydrologic and Watershed Modelling - State-of-the-Art,’ Trans. Am. Soc. of Ag. Engrs., pp. 553–559.

    Google Scholar 

  • Woolhiser, D. A., and E. F. Schultz: 1973, ‘Large Material Models in Watershed Hydrology Research,’ Proc. Int. Symp. on River Mechanics, Intl. Ass. Hyd. Res., pp. C6.1-C6.12.

    Google Scholar 

  • Woolhiser, D. A., C. L. Hanson, and A. R. Kuhlman: 1970, ‘Overland Flow on Rangeland Watersheds,’ J. Hydrol. 9(2), 336–356.

    Google Scholar 

  • WMO: 1975, ‘Intercomparison of Conceptual Models Used in Operational Hydrological Forecasting, Operational Hydrology Rep. 7, WMO, No. 429, Geneva.

    Google Scholar 

  • Zoch, R. T.: 1934, ‘On the Relation Between Rainfall and Streamflow,’ U.S. Dept. of Commerce, Monthly Weather Rev.,Part 1 62,315–322.

    Article  Google Scholar 

  • Zoch, R. T.: 1936, ‘On the Relation Between Rainfall and Streamflow,’ U.S. Dept. of Commerce, Monthly Weather Rev., Part II 64, 105–121.

    Article  Google Scholar 

  • Zoch, R. T.: 1937, ‘On the Relation Between Rainfall and Streamflow,’ U.S. Dept. of Commerce, Monthly Weather Review,Part III 65, 135–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Connell, P.E. (1991). A Historical Perspective. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics