Skip to main content

Entropy Maximization in Nuclear Physics

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 43))

  • 536 Accesses

Abstract

One of the first applications of the maximum entropy principle in nuclear physics—after the thermodynamic treatment of nuclear level densities by Bethe—was the derivation of the Gaussian Orthogonal Ensemble (GOE) by Porter about three decades ago. The GOE furnishes an excellent statistical description of the resonances observed in nuclear reactions (and has acquired a key role in chaos theory more recently). Since then many other applications have been found such as a simple parametrization of fission neutron spectra, establishment of the distribution of R- and S-matrix elements in compound-nuclear theory, and formal studies of the equilibration process leading from doorway states to compound states in nuclear reactions. On a more mundane level, Bayesian and maximum entropy techniques are becoming accepted tools of data reduction in nuclear physics, e.g., unfolding of resolution- and temperature-broadened scattering and other reaction data, and estimation of nuclear model parameters from empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzaldo Meneses, A.M.: 1986, Proc. Internat. Conf. on Nucl. Data for Basic and Applied Sci., Santa Fé, N.M., 1985, Gordon and Breach, New York, 1131; reprinted in Rad. Effects 95, 125.

    Google Scholar 

  • Balian, R.: 1968, Nuovo Cim. 57B, 183.

    Article  Google Scholar 

  • Balian, R., Y. Alhassid, and H. Reinhardt: 1986, Physics Repts. 131, 1.

    Article  MathSciNet  Google Scholar 

  • Balian, R. and M. Vénéroni: 1989, Annals of Physics 195, 324.

    Article  MathSciNet  MATH  Google Scholar 

  • Bethe, H.: 1937, Rev. Mod. Phys. 9, 69.

    Article  MATH  Google Scholar 

  • Bloch, C.: 1968, Nucl. Phys. A112, 257, 273.

    Google Scholar 

  • Bohr, A. and B.R. Mottelson: 1975, Nuclear Structure, Benjamin, London, vol. I, 284.

    Google Scholar 

  • Brody, T.A., J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong: 1981, Rev. Mod. Phys. 53, 385.

    Article  MathSciNet  Google Scholar 

  • Budtz-Jørgensen, C. and H.-H. Knitter: 1988, Nucl. Phys. A490, 3.

    Google Scholar 

  • Dresner, L.: 1957, Proc. Int. Conf. on Neutron Interactions with the Nucleus, Columbia U., Report CU-175, 71.

    Google Scholar 

  • Euler, L.: 1753, Novi Commentarii Academiae Scientiarum Petropolitanae, 3, 125; reprinted in Leonhardi Euleri Opera Omnia, Berlin, 1915.

    Google Scholar 

  • Fröhner, F.H.: 1986, Proc. Internat. Conf. on Nucl. Data for Basic and Applied Sci., Santa Fé, N.M., 1985, Gordon and Breach, New York, 1541; reprinted in Rad. Effects 96 (1986), 199.

    Google Scholar 

  • Fröhner, F.H.: 1986, Report KfK 4099.

    Google Scholar 

  • Fröhner, F.H.: 1988, Proc. Meet. Nucl. Theory for Fast Neutron Nuclear Data Evaluation, Beijing, 12–16 Oct. 1987, Report IAEA-TECDOC-483, 160; Nucl. Sei. Eng., in print.

    Google Scholar 

  • Fröhner, F.H.: 1989, Nucl. Sci. Eng. 103, 119.

    Google Scholar 

  • Fröhner, F.H.: 1990, Proc. IX Intern. School on Nucl. Phys., Neutron Phys. and Nucl. En., Varna, Sept. 1989, Singapore; separately available as Report KfK 4655 (1990).

    Google Scholar 

  • Grimes, S.M.: 1980, Proc. Int. Conf. on Theory and Appl. of Moment Methods in Many-Fermion Systems, Plenum Press, 17.

    Google Scholar 

  • Gruppelaar, H. and G. Reffo: 1977, Nucl. Sci. Eng. 62, 756.

    Google Scholar 

  • Hofmann, H.M., J. Richert, J.W. Tepel, and H.A. Weidenmüller: 1975, Ann. Phys. 90, 403.

    Article  Google Scholar 

  • Hua, L.K.: 1963, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • Jaynes, E.T.: 1957, Phys. Rev. 106, 620; 108, 171.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaynes, E.T.: 1968, IEEE Transactions on Systems Science and Cybernetics SSC-4, 227; reprinted in Papers on Probability, Statistics and Statistical Physics, R.D. Rosenkrantz (ed.), D. Reidel Publishing Co., Dordrecht (1983), 114.

    Article  Google Scholar 

  • Madland, D.G.: 1988, Proc. Int. Conf. Nucl. Data for Sci. and Technol, Mito, 1988, JAERI, 759.

    Google Scholar 

  • Madland, D.G. and J.R. Nix: 1982, Nucl. Sci. Eng. 81, 213.

    Google Scholar 

  • Märten, H. and D. Seeliger: 1986, Nucl. Sci. Eng. 93, 370.

    Google Scholar 

  • Mello, P.A.: 1979, Phys. Lett. B81, (1979) 103; P.A. Mello and T.H. Seligman, Nucl. Phys. A344 (1980), 489.

    Google Scholar 

  • Mello, P.A., P. Pereyra, and T.H. Seligman: 1985, Ann. Phys. 161, 254.

    Article  MathSciNet  Google Scholar 

  • Porter, C.E. (ed.): 1965, Statistical Theory of Spectra: Fluctuations, Academic Press, New York and London.

    Google Scholar 

  • Porter, C.E. and R.G. Thomas: 1956, Phys. Rev. 104, 483; reprinted in Porter (1965), 167; C.E. Porter and N. Rosenzweig, Suomal. Tiedeakat. Toimit., Ann. Acad. Sei. Fennicae AVI 44 (1960); reprinted in Porter (1965), 235, see also p. 2.

    Article  Google Scholar 

  • Shannon, C.E.: 1948, Bell Syst. Tech. J. 27, 379, 623; reprinted in C.E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana, 1949.

    MathSciNet  MATH  Google Scholar 

  • Van Lier, C. and G.E. Uhlenbeck: 1937, Physica 4, 531.

    Article  Google Scholar 

  • Verbaarschot and P.J. Brussaard: 1979, Phys. Lett. 87B, 155.

    Google Scholar 

  • Verbaarschot, J.M., H.A. Weidenmüller and M.R. Zirnbauer: 1985, Phys. Repts. 129, 365; J.M. Verbaarschot, Ann. Phys. 168 (1968), 368.

    Article  Google Scholar 

  • Walsh, R.L.: Nucl. Sci. Eng. 102, 119.

    Google Scholar 

  • Watt, B.E.: 1952, Phys. Rev. 87, 1037.

    Article  Google Scholar 

  • Weisskopf, V.: 1952, Phys. Rev. 52, 295.

    Article  Google Scholar 

  • Wigner, E.P.: 1957, Conf. on Neutron Phys. by Time-of-Flight, Gatlinburg, 1956, ORNL-2309, 59; Can. Math. Congr. Proc., U. of Toronto Press, Toronto, 1957, 174; Ann. Math. 67 (1958) 325; all reprinted in Porter (1965), 188, 199, 226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fröhner, F.H. (1991). Entropy Maximization in Nuclear Physics. In: Grandy, W.T., Schick, L.H. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3460-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3460-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5531-4

  • Online ISBN: 978-94-011-3460-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics