Skip to main content

Simulation of the nitrogen balance in the soil and a winter wheat crop

  • Chapter
  • 216 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 44))

Abstract

A simulation model for winter wheat growth, crop nitrogen dynamics and soil nitrogen supply was tested against experimental data. When simulations of dry matter production agreed with measurements, nitrogen uptake was simulated accurately. The total amount of soil mineral nitrogen as well as the distribution of mineral nitrogen over the various soil layers were generally simulated well, except for experiments in which fertilizer was applied late in spring. In these experiments, applied nitrogen ‘disappeared’ because it could not be accounted for by the model. Some explanations for this disappearance are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas Al-Ani MK and Hay RKM (1983) The influence of growing temperature on the growth and morphology of cereal seedling root systems. J Exp Bot 34: 1720–1730.

    Article  Google Scholar 

  2. Barraclough PB and Tinker PB (1981) The determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soil in relation to water content and bulk density. J Soil Sci 32: 225–236.

    Article  CAS  Google Scholar 

  3. Burns IG (1974) A model for predicting the redistribution of soils applied to fallow soils after excess rainfall or evaporation. J Soil Sci 25: 165–178.

    Article  Google Scholar 

  4. Cooper AJ (1973) Root temperature and plant growth. Research Review No. 4, Commonwealth Bureau of Horticulture and Plantation Crops, East Mailing, Maidstone, Kent, 73 p

    Google Scholar 

  5. De Jager A (1985) Response of plants to localized nutrient supply. PhD thesis, University of Utrecht, the Netherlands, 137 p

    Google Scholar 

  6. De Willigen P and Van Noordwijk M (1990) Modelling nutrient uptake: from single roots to complete root systems. In: Van de Broek BJ, Kabat P, Marshall B, Vos J and Van Keulen H (eds.) Modelling the growth of the potato crop. Simulation Monographs, PUDOC, Wageningen. In press

    Google Scholar 

  7. Frissel MJ and Van Veen JA (1980) Simulation of nitrogen behavior of soil-plant systems. Papers of a workshop. PUDOC, Wageningen. 249 p

    Google Scholar 

  8. Gregory PJ, McGowan M, Biscoe PV and Hunter B (1978) Water relations of winter wheat. J Agric Sci (Camb) 91: 91–102.

    Article  Google Scholar 

  9. Groot JJR (1987) Simulation of nitrogen balance in a system of winter wheat and soil. Simulation Reports CABO-TT no. 13, Centre for Agrobiological Research and Department of Theoretical Production Ecology, Wageningen, 69 p

    Google Scholar 

  10. Groot JJR and Van Keulen H (1990) Prospects for improvement of nitrogen fertilizer recommendations for cereals: A simulation study. In: Van Beusichem ML (ed.), Plant nutrition — physiology and applications, pp 685-692

    Google Scholar 

  11. Groot JJR and Verberne ELJ (1991) Response of wheat to nitrogen fertilization, a data set to validate simulation models for nitrogen dynamics in crop and soil. Fert Res 27: 349–383.

    Article  CAS  Google Scholar 

  12. Jenkinson DS and Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123: 298–305.

    Article  CAS  Google Scholar 

  13. Johnsson H, Bergström L, Jansson P-E and Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosys Environ 18: 333–356.

    Article  Google Scholar 

  14. Kortleven J (1963) Kwantitatieve aspecten van humusopbouw en humusafbraak. Versl Landbouwk Onderz nr. 69.1, PUDOC, Wageningen. 109 p

    Google Scholar 

  15. Neeteson JJ, Greenwood DJ and Habets EJMH (1986) Dependence of soil mineral N on N-fertilizer application. Plant Soil 91: 417–420.

    Article  CAS  Google Scholar 

  16. Penman HL (1956) Evaporation: an introductory survey. Neth J Agric Sci 4: 9–29.

    Google Scholar 

  17. Penning de Vries FWT (1974) Substrate utilization and respiration in relation to growth and maintenance in higher plants. Neth J Agric Sci 2: 40–44.

    Google Scholar 

  18. Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39: 77–92.

    Google Scholar 

  19. Penning de Vries FWT (1975) Use of assimilates in higher plants. In: Photosynthesis and productivity in different environments. International Biological Programme, No. 3, pp 459–480

    Google Scholar 

  20. Reinink K, Jorritsma I and Darwinkel A (1986) Adaptation of the AFRC wheat phenology model for Dutch conditions. Neth J Agric Sci 34: 1–13.

    Google Scholar 

  21. Sofield I, Evans LT, Cook MG and Wardlaw IF (1977) Factors influencing the rate and duration of grain filling in wheat. Aust J Plant Physiol 4: 785–797.

    Article  Google Scholar 

  22. Sofield I, Wardlaw IF, Evans LT and Zee SY (1977) Nitrogen, phosphorus and water contents during grain development and maturation in wheat. Aust J Plant Physiol 4: 799–810.

    Article  CAS  Google Scholar 

  23. Spitters CJT, Van Keulen H and Van Kraalingen DWG (1989) A simple and universal crop growth simulator: SUCROS87. In: Rabbinge R, Ward SA and Van Laar HH (ed.) Simulation and Systems Management in Crop Production, pp 147–181. Simulation Monographs, PUDOC, Wageningen

    Google Scholar 

  24. Stapper M (1984) SIMTAG: A Simulation Model of Wheat Genotypes. Model Documentation. University of New England, Armidale, Australia and International Center for Agricultural Research in the Dry Areas, Aleppo, Syria. 108 p

    Google Scholar 

  25. Van der Linden AMA, Van Veen JA and Frissel MJ (1987) Modelling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures. Plant Soil 101: 21–28.

    Article  Google Scholar 

  26. Van Keulen H and Seligman NG (1987) Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Mongraphs, PUDOC, Wageningen, 310 p

    Google Scholar 

  27. Van Vuuren WE (1984) Validation of the agrohydrological model DEMGEN (Demand Generator) on point data from the Hupselse Beek area in the Netherlands. In: Udluft P et al. Proc Int Symp on recent investigations in the zone of aeration, Munich, W Germany. October 1984. pp 829–839. Technical University Munich

    Google Scholar 

  28. Verberne ELJ, Hassink J, De Willigen P, Groot JJR and Van Veen JA (1990) Modelling organic matter dynamics in different soils. Neth J Agric Sci 38: 221–238.

    CAS  Google Scholar 

  29. Verbruggen J (1985) Simulatie van het denitrificatie-proces in de bodem. Doctoraatproefschrift nr. 140, Faculteit Landbouwwetenschappen, K.U. Leuven. 180 p

    Google Scholar 

  30. Vos J (1981) Effect of temperature and nitrogen supply on post anthesis growth of wheat: measurements and simulations. Agric Res Rep 811, PUDOC, Wageningen, 164 p

    Google Scholar 

  31. Wehrman J and Coldewey-Zum Eschenhoff (1986) Distribution of nitrate, exchangeable and non-exchangeable ammonium in the soil-root interface. In: Lambers H, Neeteson JJ and Stulen I (eds.), Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants, pp 447–450. Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  32. Whitmore AP and Addiscott TM (1987) A function for describing nitrogen uptake, dry matter production and rooting by wheat crops. Plant Soil 101: 51–60.

    Article  CAS  Google Scholar 

  33. Wösten JHM, Schuren CHJE, Bouma J and Stein A (1990) Functional sensitivity analysis of four methods to generate soil hydraulic functions. Soil Sci Soc Am J 54: 832–836.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Groot, J.J.R., de Willigen, P. (1991). Simulation of the nitrogen balance in the soil and a winter wheat crop. In: Groot, J.J.R., De Willigen, P., Verberne, E.L.J. (eds) Nitrogen Turnover in the Soil-Crop System. Developments in Plant and Soil Sciences, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3434-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3434-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5518-5

  • Online ISBN: 978-94-011-3434-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics