Skip to main content

Projection Methods for Solving Nonlinear Systems of Equations

  • Chapter
Nematics

Part of the book series: NATO ASI Series ((ASIC,volume 332))

  • 268 Accesses

Abstract

This paper describes several nonlinear projection methods based on Krylov subspaces and analyzes their convergence. The prototype of these methods is a technique that generalizes the conjugate direction method by minimizing the norm of the function F over some subspace. The emphasis of this paper is on nonlinear least squares problems which can also be handled by this general approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. N. Brown. A local convergence theory for combined inexact-Newton/ finite difference projection methods. SIAM J. Num. Anal, 24:407–434, 1987.

    Article  ADS  MATH  Google Scholar 

  2. P. N. Brown and A.C. Hindmarsh. Matrix-free methods for stiff systems of odes. SIAM J. Num. Anal., 23:610–638, 1986.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. N. Brown and A. C. Hindmarsh. Reduced-Storage matrix methods in Stiff ODE systems. Technical Report UCLR-95088, Comp. and Math. Res. Div., L–316, Lawrence Livermore Lab., Livermore Ca., 1986.

    Google Scholar 

  4. P. N. Brown and Y. Saad. Globally convergent techniques in nonlinear Newton-Krylov algorithms. Technical Report 89–57, Research Institute for Advanced Computer Science, 1989.

    Google Scholar 

  5. P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comp., 27:, 1990. To appear.

    Google Scholar 

  6. T. F. Chan and K. R. Jackson. Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM J. Stat. Scien. Comput., 7:533–542, 1984.

    Article  MathSciNet  Google Scholar 

  7. R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal, 18(2):400–408, 1982.

    Article  MathSciNet  Google Scholar 

  8. J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ, 1983.

    MATH  Google Scholar 

  9. E. Gallopoulos and Y. Saad. On the parallel solution of parabolic equations. In R. De Groot, editor, Proceedings of the International Conference on Supercom-puting 1989, Heraklion, Crete, June 5–9, 1989, ACM press, 1989.

    Google Scholar 

  10. R. Glowinski, H. B. Keller, and L. Reinhart. Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems. SIAM J. Sci. Stat. Comp, 6:793–832, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Kerkhoven and Y. Saad. Acceleration techniques for decoupling algorithms in semiconductor simulation. Technical Report 684, University of Illinois, CSRD, Urbana, IL., 1987.

    Google Scholar 

  12. M. Mallet, J. Periaux, and B. Stoufflet. Convergence acceleration of finite element methods for the solution the euler and navier stokes equations of compressible flow. In Proceedings of the 7-th GAMM Conference on Numerical methods in Fluid Dynamics, page, INRIA, North-Holland, 1987.

    Google Scholar 

  13. J. M. Ortega, and W.C. Rheinboldt. Iterative solution of nonlinear equations in several variables. Academic Press, New-York, 1970.

    MATH  Google Scholar 

  14. Y. Saad. Numerical solution of large Lyapunov equations. Technical Report 89-20, RIACS, Ms 230-5, NASA Ames, Moffett Field, CA 94035, 1989. Also in these proceedings.

    Google Scholar 

  15. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  16. L.B. Wigton, D.P. Yu, and N.J. Young. GMRES acceleration of computational fluid dynamics codes. In Proceedings of the 1985 AIAA conference, Denver 1985, AIAA, Denver, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, P.N., Saad, Y. (1991). Projection Methods for Solving Nonlinear Systems of Equations. In: Coron, JM., Ghidaglia, JM., Hélein, F. (eds) Nematics. NATO ASI Series, vol 332. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3428-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3428-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5516-1

  • Online ISBN: 978-94-011-3428-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics