Skip to main content

Polynomial Identities for 2 × 2 Matrices

  • Chapter
Topics in Computational Algebra
  • 173 Accesses

Abstract

Let K<X> be the free associative algebra freely generated by a countable set of symbols X= {x 1, x 2,…} over a field K of characteristic 0. The element f (x 1,…, x m ) ∈ K<X> is called a polynomial identity for a K-algebra R if f(r 1r m ) = 0 for all r 1…, r m R. The set T(R) = {f(x 1,…, x m ) ∈ K<X> | f is a polynomial identity for R} is a two-sided ideal of K<X> which is invariant under all endomorphisms of K<X> and is called a T-ideal. When T(R) ≠ 0, i.e. R satisfies a non-trivial polynomial identity, R is a PI-algebra. The class var R of all algebras satisfying the identities from T(R) is called the variety of algebras generated by R.

One of the talks given by the author at the Seminar on Computational Algebra of the Department of Mathematics of the II University of Rome (Tor Vergata) in April–May 1990.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Berele, Homogeneous polynomial identities, Israel J. Math 42 (1982), 258 – 272.

    Article  MathSciNet  MATH  Google Scholar 

  2. V.S. Drenski, Representations of the symmetric group and varieties of linear algebras, Mat. Sb. 115 (1981), 98–115 (Russian). Translation: Math. USSR Sb. 43 (1981), 85 – 101.

    MathSciNet  Google Scholar 

  3. V.S. Drenski, A minimal basis for the identities of a second-order matrix algebra over a field of characteristic 0, Algebra i Logika 20 (1981), 282 – 290 (Russian). Translation: Algebra and Logic 20 (1981), 188 – 194.

    Article  MathSciNet  Google Scholar 

  4. V. S. Drenski, Lattices of varieties of associative algebras, Serdica 8 (1982), 20 – 31 (Russian).

    MathSciNet  Google Scholar 

  5. V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra 91 (1984), 1 – 17.

    Article  MathSciNet  MATH  Google Scholar 

  6. V.S. Drensky, Explicit codimension formulas of certain T-ideals, Sib. Mat. Zh. 29 (1988) No. 6, 30 – 36 (Russian). Translation: Siberian Math. J. 29 (1988), 897 – 902.

    MathSciNet  Google Scholar 

  7. V. Drensky, Computational techniques for PI-algebras, in “Topics in Algebra”, part 1, “Rings and Representations of Algebras”, Banach Center Publ. 26, Polish Scientific Publishers, Warsaw, 1990, 17 – 44.

    Google Scholar 

  8. E. Forraanek, The polynomial identities of matrices, Contemp. Math. 13 (1982), 41 – 79.

    Article  Google Scholar 

  9. E. Forraanek, Invariants and the ring of generic matrices, J. Algebra 89 (1984), 178 – 223.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Formanek, P. Halpin, W.-C.W. Li, The Poincaré series of the ring of 2×2 generic matrices, J. Algebra 69 (1981), 105 – 112.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. James, A. Kerber, “The Representation Theory of the Symmetric Group”, Encyclopedia of Math. and Its Appl. 16, Addison-Wesley, Reading, Mass., 1981.

    MATH  Google Scholar 

  12. L. Le Bruyn, Trace rings of generic 2 by 2 matrices, Mem. Amer. Math. Soc 66 (1987), No. 363.

    Google Scholar 

  13. I. G. Macdonald, “Symmetric Functions and Hall Polynomials”, Oxford Univ. Press (Clarendon), Oxford, 1979.

    MATH  Google Scholar 

  14. C. Procesi, The invariant theory of n × n matrices. Advances in Math. 19 (1976), 306 – 381.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Procesi, Computing with 2 × 2 matrices, J. Algebra 87 (1984), 342 – 359.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ju.P. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0, Algebra 1 Loglka 12 (1973), 83 – 113 (Russian). Translation: Algebra and Logic 12 (1973), 43 – 63.

    MathSciNet  Google Scholar 

  17. Yu.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Izv. AN SSSR, Ser. Mat. 38 (1974), 723–756 (Russian). Translation: Izv. AN SSSR, Ser. Mat Math. USSR Izv. 8 (1974), 727 – 760.

    MathSciNet  Google Scholar 

  18. A. Regev, Existence of identities in A ⊗ B, Israel J. Math. 11 (1972), 131 – 152.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Regev, On the codimensions of matrix algebras, in “Algebra -Some Recent Trends”, Lect. Notes in Math. 1352, Springer Verlag, Berlin-Heidelberg-New York, 1988, 162 – 172.

    Google Scholar 

  20. L.H. Rowen, “Polynomial Identities in Ring Theory”, Acad. Press, New York, 1979.

    Google Scholar 

  21. W. Specht, Gesetze in Ringen. I, Math. Z. 52 (1950), 557 – 589.

    Article  MathSciNet  MATH  Google Scholar 

  22. M.R. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring. Amer. J. Math. 64 (1942), 371 – 388.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Weyl, “The Classical Groups, Their Invariants and Representations”, Princeton Univ. Press, Princeton, N.J., 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drensky, V. (1990). Polynomial Identities for 2 × 2 Matrices. In: Cattaneo, G.M.P., Strickland, E. (eds) Topics in Computational Algebra. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3424-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3424-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5514-7

  • Online ISBN: 978-94-011-3424-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics