Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 169))

Abstract

Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening com­plications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk.

Invited talk to IUAP Conference on Primordial Nucleosynthesis and Evolution of Early Universe, Tokyo, 4-8 Sepetmber 1990. K. Sato (ed.). Kluwer publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abia C and Rebolo R (1989) “Oxygen abundances in unevolved metal-poor stars: interpretation and consequences” Astrophys J, 347, 186–194

    Article  ADS  Google Scholar 

  • Axon D J, Stavely-Smith L, Fosbury R A E, Danziger J, Boksenberg A and Davies R D (1988) “Spectrophotometric and neutral hydrogen observations of Michigan 160” Mon Not R Astr Soc, 281, 1077–1090

    ADS  Google Scholar 

  • Barry D C (1988) “The chromosperic age dependence of the birthrate, composition, motions and rotation of late F and G dwarfs within 25 parsecs of the Sun” Astrophys J, 334, 436–448

    Article  ADS  Google Scholar 

  • Boesgaard A and Steigman G (1985) “Big Bang nucleosynthesis: theories and observations” Ann Rev Astr Astrophys, 23, 319–378

    Article  ADS  Google Scholar 

  • Briggs F H, Wolfe A M, Liszt H M, Davis M M and Turner K L (1989) “The spatial extent of the z = 2.04 absorber in the spectrum of PKS 0458–020” Astrophys J, 341, 650–657

    Article  ADS  Google Scholar 

  • Byrne J et al (1990) “Measurement of the neutron lifetime by counting trapped protons” Phys Rev Let 65, 289–292

    Article  ADS  Google Scholar 

  • Clayton D D (1985) “Galactic chemical evolution and nucleocosmochronology: a standard model” in W D Amen and J W Truran (eds) Nucleosynthesis: Challenges and New Developments Univ of Chicago Press, 65–88

    Google Scholar 

  • Edmunds M G and Pagel B E J (1984) “On the composition of H II regions in southern galaxies-III. NCG 2997 and 7793” Mon Not R Astr Soc, 211, 507–519

    ADS  Google Scholar 

  • Eggen O J, Lynden-Bell D and Sandage A R (1962) “Evidence from the motions of old stars that the Galaxy has collapsed” Astrophys J, 136, 748–766

    Article  ADS  Google Scholar 

  • Ellis J, Salati P and Shaver P (eds) (1990) Proceedings of the ESO-CERN Topical Workshop on LEP and the Universe, Geneva: CERN-TH 5709 /90

    Google Scholar 

  • Frogel J A (1988), “The Galactic nuclear bulge and the stellar content of spheroidal systems” Ann Rev Astr Astrophys 26, 51–92

    Article  ADS  Google Scholar 

  • Geisler D and Friel E D (1990) “Abundance distribution of Baade’s window giants’” ESO/CTIO Workshop: Bulges of Galaxies, B J Jarvis & D M Temdrup (eds), Garching: ESO Conference and Workshop Proceedings no 35, 77–82

    Google Scholar 

  • Gilmore G and Wyse R F G (1986), “The Chemical Evolution of the Galaxy” Nature, London, 322, 806–807

    Article  ADS  Google Scholar 

  • Gilmore G, Wyse R F G and Kuijken K (1989), “Kinematics, Chemistry and Structure of the Galaxy”, Ann Rev Astr Astrophys, 27, 555–627

    Article  ADS  Google Scholar 

  • Grenon M (1989), “The chemical evolution of the Galactic disk from the kinematics and metallicities of proper motion stars” Astrophys Sp Sci, 156, 29–37

    Article  ADS  Google Scholar 

  • Grenon M (1990) “From halo to SMR stars” in ESO/CTIO Workshop: Bulges of Galaxies, B J Jarvis & D M Temdrup (eds), Garching: ESO Conference and Workshop Proceedings no 35, 143–152

    Google Scholar 

  • Guiderdoni B and Rocca-Volmerange B (1990), “Constraints on the evolution of high red-shift galaxies and on q0 from faint galaxy counts” Astr Astrophys, 227, 362–378

    ADS  Google Scholar 

  • Hartwick F D A (1976), “The chemical evolution of the Galactic halo” Astrophys J 209, 418–423

    Article  ADS  Google Scholar 

  • Köppen J and Arimoto N (1990) “A “standard” sequence of chemical evolution models for disk galaxies” in F Ferrini, J Franco and F Matteucci (eds) Chemical and Dynamical Evolution of Galaxies Pisa, Giardini Editore, in press

    Google Scholar 

  • Kurko-Suonio H, Matzner R A, Olive K A and Schramm D N (1990) “Big Bang nucleosynthesis and the quark-hadron transition” Astrophys J, 353, 406–410

    Google Scholar 

  • Larson R B (1974) “Effects of supernovae on the early evolution of galaxies” Mon Not R Astr Soc 169, 229–245

    ADS  Google Scholar 

  • Larson R B (1976) “Models for the formation of disc galaxies” Mon Not R Astr Soc 176, 31–52

    ADS  Google Scholar 

  • Larson R B (1990) “Galaxy building” Pub Astr Soc Pacific, 102 709–722

    Article  ADS  Google Scholar 

  • Lewis J R and Freeman K C (1989) “Kinematics and chemical properties of the old disk of the Galaxy” Astr J, 97, 139–162

    Article  ADS  Google Scholar 

  • Lynden-Bell D (1975) “The chemical evolution of galaxies” Vistas in Astr 19, 299–316

    Article  ADS  Google Scholar 

  • Mampe W et al (1989) “Neutron lifetime measured with stored ultracold neutrons” Phys Rev Lett, 63, 593–596

    Article  ADS  Google Scholar 

  • Matteucci F and Brocato E (1990) “Metallicity distribution and abundance ratios in the stars of the Galactic bulge” submitted to Astrophy J Lett,

    Google Scholar 

  • Matteucci F and Greggio L (1986) “Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas” Astr Astrophys, 154, 279–287

    ADS  Google Scholar 

  • McCall M L (1982) Thesis University of Texas, Austin

    Google Scholar 

  • Nissen P E, Edvardsson B and Gustafsson B (1985) “Oxygen and a-element abundances in Galactic disk stars as a function of age” in I J Danziger, F Matteucci and K Kjär (eds), Production and distribution of the C, N, O elements ESO, Garching, 131–149

    Google Scholar 

  • Ostriker J B and Thuan T X (1975) “Galactic evolution II. Disk galaxies with massive halos” Astrophys J, 202,353–364

    Article  ADS  Google Scholar 

  • Pagel B E J (1989a) “The G-dwarf problem and radio-active cosmochronology” in J E Beckman and B E J Pagel (eds), Evolutionary Phenomena in Galaxies, Cambridge University Press, 201–223

    Google Scholar 

  • Pagel B E J (1989b) “An analytical model for the evolution of primary elements in the Galaxy” Rev Mex Astr Astrofis, 18, 161–172

    ADS  Google Scholar 

  • Pagel B E J (1990) “Baryonic dark matter and the chemical evolution of galaxies” in D Lynden-Bell and G Gihnore (eds), Baryonic Dark Matter Kluwer, Dordrecht, 237–256

    Chapter  Google Scholar 

  • Pagel B E J (1990) “Baryonic dark matter and the chemical evolution of galaxies” in D Lynden-Bell and G Gihnore (eds), Baryonic Dark Matter Kluwer, Dordrecht, 237–256

    Chapter  Google Scholar 

  • Pagel B E J and Patchett B E (1975) “Metal abundances in nearby stars and the chemical history of the solar neighbourhood” Mon Not R Astr Soc 172, 13–40

    ADS  Google Scholar 

  • Pagel B E J and Simonson E A (1989) “Helium in three H II galaxies and the primordial helium abundance” Rev Mex Astr Astrofis, 18, 153–159

    ADS  Google Scholar 

  • Pagel B E J, Terlevich R J and Melnick J (1986) “New measurements of helium in H II galaxies” Pub Astr Soc Pacific, 98, 1005–1008

    Article  ADS  Google Scholar 

  • Peimbert M and Serrano A (1982) “Chemical evolution of galaxies-II. Variation of the heavy element yield with Z” Mon Not R Astr Soc 198, 563–572

    ADS  Google Scholar 

  • Peimbert M and Torres-Peimbert S (1974) “Chemical composition of H II regions in the Large Magellanic Cloud and its cosmological implications” Astrophys J, 193, 327–333

    Google Scholar 

  • Peimbert M and Torres-Peimbert S (1976) “Chemical composition of H II regions in the Small Magellanic Cloud and the pregalactic helium abundance” Astrophys J, 203, 581–586

    Article  ADS  Google Scholar 

  • Pettini M, Boksenberg A and Hunstead R W (1990) “Metal enrichment, dust and star formation in galaxies at high redshifts I. The z = 2.3091 absorber towards PHL 957” Astrophys J, 348, 48–56

    Article  ADS  Google Scholar 

  • Rauch M, Carswell R F, Robertson J G, Shaver P A and Webb J K (1990) “The heavy element abundance in the z = 2.076 absorption system towards the QSO 2206–199N” Mon Not R Astr Soc, 242, 698–703

    ADS  Google Scholar 

  • Rich R M (1988), “Spectroscopy and abundances of 88 K giants in Baade’s window” Astr J, 95, 828–865

    Article  ADS  Google Scholar 

  • Ryan S, Norris J and Bessell M S (1990), “Element abundance rations in extremely metal-deficient stars” Astrophys J, in press

    Google Scholar 

  • Scalo J M (1986) “The stellar initial mass function” Fund Cosm Phys, 11, 1–278

    ADS  Google Scholar 

  • Scalo J (1989) “Top-heavy IMFs in starburst galaxies” in A Renzini, G. Fabbiano and J S Gallagher (eds) Windows on Galaxies, Dordrecht: Kluwer

    Google Scholar 

  • Schmidt M (1963) “The rate of star formation II. The rate of formation of stars of different mass” Astrophys J, 137, 758–769

    Article  ADS  MATH  Google Scholar 

  • Searle L and Sargent W L W (1972) “Inferences from the composition of two dwarf blue galaxies” Astrophys J, 173, 25–33

    Article  ADS  Google Scholar 

  • Searle L and Zinn R (1978) “Composition of the halo clusters and the formation the Galactic halo” Astrophys J, 225, 357–379

    Article  ADS  Google Scholar 

  • Simonson E A (1990) Thesis Sussex University

    Google Scholar 

  • Skillman E D, Kennicutt R C and Hodge P W (1979) “Oxygen abundances in nearby dwarf irregular galaxies” Astrophys J, 347, 875–882

    Article  ADS  Google Scholar 

  • Smith H E, Cohen R D, Bums J E, Moore D J and Uchida B A (1989) “Ly a emission from disk absorption systems at high redshift: star formation in young galaxy disks” Astrophys J, 347, 87–95

    Article  ADS  Google Scholar 

  • Sommer-Larsen J (1990a) “On the G-dwarf abundance distribution in the solar cylinder” preprint

    Google Scholar 

  • Sommer-Larsen J (1990b) “The formation and chemical evolution of the Galactic disk” submitted to Mon Not R Ast Soc

    Google Scholar 

  • Thum T X, Montmerle T and Van J T T (eds) (1987), Starbursts and Galaxy Evolution, Paris: Ed Frontières

    Google Scholar 

  • Tinsley B M (1979) “Stellar lifetimes and abundance ratios in chemical evolution” Astrophys J, 229, 1046–1056

    Article  ADS  Google Scholar 

  • Truran J W and Cameron A G W (1971) “Evolutionary models of nucleosynthesis in the Galaxy” Astrophys Space Sci, 14, 179–222

    Article  ADS  Google Scholar 

  • Tully R B (1990) “The Hubble constant” in E Vangioni-Flam, M Cassé, J Audouze and J T T Van (eds) Astrophysical Ages and Dating Methods” Paris: Ed Frontières, 3–13

    Google Scholar 

  • van den Bergh S (1962) “The frequency of stars with different metal abundances” Astr J, 67, 486–490

    Article  ADS  Google Scholar 

  • Wheeler J C, Sneden C and Truran J W (1989) “Abundance ratios as a function of metallicity” Ann Rev Astr Astrophys, 27, 279–349

    Article  ADS  Google Scholar 

  • Wolfe A M (1986) “New evidence from the Lyman-alpha forest concerning the formation of galaxies” Phil Trans R Soc, London, A, 320, 503–515

    Article  ADS  Google Scholar 

  • Yang J, Turner M S, Steigman G, Schramm D S and Olive K A (1984) “Primordial nucleosynthesis: a critical comparison of theory and observation” Astrophys J 281, 493–511

    Article  ADS  Google Scholar 

  • Yoshii Y and Arimoto N (1987) “Spheroidal systems as a one-parameter family of mass at their birth” Astr Astrophys 188, 13–23

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pagel, B.E.J. (1991). Chemical Evolution of Galaxies. In: Sato, K., Audouze, J. (eds) Primordial Nucleosynthesis and Evolution of Early Universe. Astrophysics and Space Science Library, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3410-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3410-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5509-3

  • Online ISBN: 978-94-011-3410-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics