Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 169))

Abstract

Inflation provides very strong motivation for a flat Universe, Harrison-Zel’dovich (constant-curvature) density perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model—one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Ω, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and “most well motivated” model, the current data point to a “best-fit model” with the following parameters: ΩB Ω 0.03, QCDM Ω 0.17, ΩΛ Ω 0.8, and H o ≃ 70 km sec-1 Mpc-1, which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule such out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  4. D. La and P.J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).

    Article  ADS  Google Scholar 

  5. J.M. Bardeen, P.J. Steinhardt, and M.S. Turner, Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  6. A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  7. A. A. Starobinskii, Phys. Lett. B 117, 175 (1982)

    ADS  Google Scholar 

  8. S. W. Hawking, Phys. Lett. B 115, 295 (1982).

    Article  ADS  Google Scholar 

  9. V.A. Rubakov, M. Sazhin, and A. Veryaskin, Phys. Lett. B 115, 189 (1982)

    Article  ADS  Google Scholar 

  10. R. Fabbri and M. Pollock, Phys. Lett. B 125, 445 (1983)

    Article  ADS  Google Scholar 

  11. L. Abbott and M. Wise, Nucl. Phys. B 244, 541 (1984)

    Article  ADS  Google Scholar 

  12. B. Allen, Phys. Rev. D 37, 2078 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.T. Ressell and M.S. Turner, preprint (1989)

    Google Scholar 

  14. M.T. Ressell and M.S. Turner, preprint (1989)

    Google Scholar 

  15. See, e.g., J. Silk and M.S. Turner, Phys. Rev. D 35, 419 (1987)

    Article  ADS  Google Scholar 

  16. D. Salopek, J.R. Bond, and J.M. Bardeen, Phys. Rev. D 40, 1753 (1989).

    Article  ADS  Google Scholar 

  17. D. Seckel and M.S. Turner, Phys. Rev. D 32, 3178 (1985)

    Article  ADS  Google Scholar 

  18. A.D. Linde, Phys. Lett. B 158, 375 (1985)

    Article  ADS  Google Scholar 

  19. M. Axenides, R. Brandenberger, and M.S. Turner, Phys. Lett. B 128, 178 (1983)

    ADS  Google Scholar 

  20. A. D. Linde, Phys. Lett. B 158, 375 (1985)

    Article  ADS  Google Scholar 

  21. M. S. Turner, A. Cohen, and D. Kaplan, Phys. Lett. B 216, 20 (1989).

    Article  ADS  Google Scholar 

  22. E.W. Kolb and M.S. Turner, The Early Universe (Addison–Wesley, Redwood City, CA 1990), Ch. 8.

    MATH  Google Scholar 

  23. J. Yang, M.S. Turner, G. Steigman, D.N. Schramm, and K.A. Olive, Astrophys. J. 281, 493 (1984)

    Article  ADS  Google Scholar 

  24. K.A. Olive, D.N. Schramm, G. Steigman, and T.P. Walker, Phys. Lett. B 236, 454 (1990).

    Article  ADS  Google Scholar 

  25. See, e.g., S. Dimopoulos, R. Esmailzadeh, L.J. Hall, and G.D. Starkman, Phys. Rev. Lett. 60, 7 (1988)

    Article  ADS  Google Scholar 

  26. J.G. Bartlett and L.J. Hall, Phys. Rev. Lett., in press (1990)

    Google Scholar 

  27. J. Applegate, C.J. Hogan, and R.J. Scherrer, Phys. Rev. D 35, 1151 (1987)

    Article  ADS  Google Scholar 

  28. C. Al-cock, G. Fuller, and G. Mathews, Astrophys. J. 320, 439 (1987)

    Article  ADS  Google Scholar 

  29. R.A. Malaney and W.A. Fowler, Astrophys. J. 333, 14 (1988).

    Article  ADS  Google Scholar 

  30. See e.g., H. Kurkio-Sunio et al., Phys. Rev. D 38, 1091 (1988)

    Article  ADS  Google Scholar 

  31. H. Kurkio-Sumo et al., Astrophys. J. 353, 406 (1990)

    Article  ADS  Google Scholar 

  32. K. Sato and N. Terasawa, Phys. Rev. D 39, 2893 (1989).

    Article  ADS  Google Scholar 

  33. See, e.g., M. S. Turner, in Dark Matter in the Universe, eds. J. Kormendy and G. Knapp (Reidel, Dordrecht, 1989 )

    Google Scholar 

  34. V. Trimble, Ann. Rev. Astron. Astrophys. 25, 425 (1987)

    Article  ADS  Google Scholar 

  35. J. Primack et al., Ann. Rev. Nucl. Part. Sci. 38, 751 (1989).

    ADS  Google Scholar 

  36. J.R. Bond and A. Szalay, Astrophys. J. 276, 443 (1983).

    Article  ADS  Google Scholar 

  37. S.D.M. White, C. Frenk, and M. Davis, Astrophys. J. 274, L1 (1983)

    Article  ADS  Google Scholar 

  38. S.D.M. White, C. Frenk, and M. Davis ibid 287, 1 (1983)

    ADS  Google Scholar 

  39. J. Centrella and A. Melott, Nature 305, 196 (1982).

    Article  ADS  Google Scholar 

  40. J. Centrella and A. Melott, Nature 305, 196 (1982).

    Article  ADS  Google Scholar 

  41. J.R. Bond, A.S. Szalay, and M.S. Tuener, Phys. Rev. Lett. 48, 1636 (1982).

    Article  ADS  Google Scholar 

  42. A keV axino is an example of a well motivated warm dark matter candidate; see, K. Rajagopal, M.S. Turner, and F. Wilczek, Nucl. Phys. B, in press (1911).

    Google Scholar 

  43. For a discussion of the cold dark matter paradigm for structure formation see Ch. 9 of Ref. 6; C.D.M. Frenk, in Proc. of Nobel Symposium No. 79: The Birth and Early Evolution of Our Universe, eds. B. Gustafsson, Y. Nilsson, and B. Skagerstam (WSPC, Singapore, 1991); or G. Efstathiou, in Physics of the Early Universe, eds. J.A. Peacock, A.F. Heavens, and A.T. Davies (Adam Higler, NY, 1990 ).

    Google Scholar 

  44. G. Efstathiou and M.J. Rees, Mon. Not. R. astr. Soc. 230, 5p (1988).

    ADS  Google Scholar 

  45. L. Cowie, in Proc. of Nobel Symposium No. 79: The Birth and Early Evolution of Our Universe, eds. B. Gustafsson, Y. Nilsson, and B. Skagerstam (WSPC, Singapore, 1991); or in these proceedings.

    Google Scholar 

  46. G. Blumenthal, S.M. Faber, J.R. Primack, and M.J. Rees, Nature 311, 517 (1984).

    Article  ADS  Google Scholar 

  47. S.J. Maddox, G. Efstathiou, W.J. Sutherland, and J. Loveday, Mon. Not. R. astr. Soc. 242, 43p (1990).

    ADS  Google Scholar 

  48. R.P. Kirshner, A. Oemler, P. Schechter, and S. Shectman, Astrophys. J. 248, L57 (1981)

    Article  ADS  Google Scholar 

  49. V. de Lapparent, M.J. Geller, and J. Huchra, Astrophys. J., 302, L1 (1986).

    Article  ADS  Google Scholar 

  50. M.J. Geller and J. Huchra, Science 246, 897 (1989).

    Article  ADS  Google Scholar 

  51. A. Dressler, D. Lynden-Bell, D. Burstein, R. Davies, S. Faber, R. Terlevich, and G. Wegner, Astrophys. J. 313, L37 (1987).

    Article  ADS  Google Scholar 

  52. T.J. Broadhurst, R.S. Ellis, D.C. Koo, and A.S. Szalay, Nature 343, 726 (1990).

    Article  ADS  Google Scholar 

  53. N.A. Bahcall, Ann. Rev. Astron. Astrophys. 26, 631 (1988)

    Article  ADS  Google Scholar 

  54. N.A. Bahcall and R.M. Soneira, Astrophys. J. 270, 20 (1983)

    Article  ADS  Google Scholar 

  55. M. Hauser and P.J.E. Peebles, Astrophys. J. 185, 757 (1973).

    Article  ADS  Google Scholar 

  56. W. Sutherland, Mon. Not. R. astr. Soc. 234, 159 (1988)

    ADS  Google Scholar 

  57. A. Dekel, G.R. Blumenthal, J.R. Primack, and S. Olivier, Astrophys. J. 338, L5 (1989)

    Article  ADS  Google Scholar 

  58. S. Olivier, G.R. Blumenthal, A. Dekel, J.R. Primack, and D. Stanhill, Astrophys. J. 356, 1 (1990).

    Article  ADS  Google Scholar 

  59. S.D.M. White, C.D.M. Frenk, M. Davis, and G. Efstathiou, Astrophys. J. 313, 505 (1987)

    Article  ADS  Google Scholar 

  60. D. Weinberg and J. Gunn, Astrophys. J. 352, L25 (1990)

    Article  ADS  Google Scholar 

  61. C. Park, Mon. Not. R. astr. Soc. 242, 59p (1990)

    ADS  Google Scholar 

  62. C. Park, Mon. Not. R. astr. Soc. 242, 59p (1990)

    ADS  Google Scholar 

  63. J. Villumsen, Ohio State University preprint (1990)

    Google Scholar 

  64. E. Bertschinger and J. Gelb, in preparation (1990).

    Google Scholar 

  65. E. Bertschinger, A. Dekel, and A. Yahil, in preparation (1990)

    Google Scholar 

  66. M. Rowan M. Robinson et al., Mon. Not. R. astr. Soc., in press (1990)

    Google Scholar 

  67. M.A. Strauss and M. Davis, in Large-scale Motions in The Universe: A Vatican Study Week, eds. V.C. Rubin and G.V. Coyne (Princeton Univ. Press, Princeton, 1988 ).

    Google Scholar 

  68. E. Loh and E.J. Spillar, Astrophys. J. 307, L1 (1986)

    Article  ADS  Google Scholar 

  69. S. Bahcall and S. Tremaine, Astrophys. J. 326, L1 (1988) for criticism of the Loh-Spillar work.

    Article  ADS  Google Scholar 

  70. L. Cowie, in Proc. of Nobel Symposium No. 79: The Birth and Early Evolution of Our Universe, eds. B. Gustafsson, Y. Nilsson, and B. Skagerstam (WSPC, Singapore, 1991 )

    Google Scholar 

  71. D.C. Koo and A.S. Szalay, Astrophys. J. 282, 390 (1984)

    Article  ADS  Google Scholar 

  72. T. Shanks, P.R.F. Stevenson, R. Fong, and H.T. MacGillivray, Mon. Not. R. astr. Soc. 206, 767 (1984)

    ADS  Google Scholar 

  73. D. Koo, in The Epoch of Galaxy Formation, eds. T. Shanks, A.F. Heavens, and J.A. Peacock (Kluwer, Dordrecht, 1989 ).

    Google Scholar 

  74. M.S. Turner, G. Steigman, and L. Krauss, Phys. Rev. Lett. 52, 2090 (1984).

    Article  ADS  Google Scholar 

  75. P.J.E. Peebles, Astrophys. J. 284, 439 (1984).

    Article  ADS  Google Scholar 

  76. G.R. Blumenthal, A. Dekel, and J.R. Primack, Astrophys. J. 326, 539 (1988).

    Article  ADS  Google Scholar 

  77. J. Charlton and M.S. Turner, Astrophys. J. 313, 495 (1987).

    Article  ADS  Google Scholar 

  78. N. Vittorio and J. Silk, Astrophys. J. 285, L39 (1984)

    Article  ADS  Google Scholar 

  79. N. Vittorio et al., Astrophys. J. 341, 163 (1989)

    Article  ADS  Google Scholar 

  80. N. Vittorio et al., Astrophys. J. 341, 163 (1989)

    Article  ADS  Google Scholar 

  81. A.C.S. Read-head et al., Astrophys. J. 346, 566 (1989)

    Article  ADS  Google Scholar 

  82. J.R. Bond and G. Efstathiou, Astrophys. J. 285, L44 (1984)

    Article  ADS  Google Scholar 

  83. Mon. Not. R. astr. Soc. 226, 655 (1987)

    Google Scholar 

  84. J.R. Bond, in Frontiers in Physics: From Colliders to Cosmology, eds. B. Campbell and F. Khanna (WSPC, Singapore, 1990 )

    Google Scholar 

  85. J.R. Bond, in Frontiers in Physics: From Colliders to Cosmology, eds. B. Campbell and F. Khanna (WSPC, Singapore, 1990 )

    Google Scholar 

  86. A. Sandage, Astrophys. J. 133, 355 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  87. H. Spinrad and S. Djorgovski, in Observational Cosmology, eds. A. Hewitt, G. Burbidge, and Li-Zhi Fang (Reidel, Dordrecht, 1987 ), p. 129.

    Chapter  Google Scholar 

  88. N. Vittorio and M.S. Turner, Astrophys. J. 316, 475 (1987).

    Article  ADS  Google Scholar 

  89. See e.g., N. Kaiser and O. Lahav, Mon. Not. R. astr. Soc. 237, 129 (1989)

    ADS  Google Scholar 

  90. E. Bertschinger Large-scale Motions in The Universe: A Vatican Study Week, eds. V.C. Rubin and G.V. Coyne (Princeton Univ. Press, Princeton, 1988 ).

    Google Scholar 

  91. E. Bertschinger Large-scale Motions in The Universe: A Vatican Study Week, eds. V.C. Rubin and G.V. Coyne (Princeton Univ. Press, Princeton, 1988 ).

    Google Scholar 

  92. E.L. Turner, Astrophys. J. (Lett)., in press(1990).

    Google Scholar 

  93. P.J.E. Peebles, in preparation (1990).

    Google Scholar 

  94. E.T. Vishniac, Astrophys. J. 322, 597 (1987); and work in progress (1990).

    Article  ADS  Google Scholar 

  95. M.S. Turner and B.J. Carr, Mod. Phys. Lett. A 2, 1 (1987).

    Article  ADS  Google Scholar 

  96. S. Coleman, Nucl. Phys B310, 643 (1988)

    Article  ADS  Google Scholar 

  97. S. Hawking, Phys. Lett. B 134, 403 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  98. E. Baum, Phys. Lett. B 133, 185 (1983).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Turner, M.S. (1991). The Best-Fit Universe. In: Sato, K., Audouze, J. (eds) Primordial Nucleosynthesis and Evolution of Early Universe. Astrophysics and Space Science Library, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3410-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3410-1_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5509-3

  • Online ISBN: 978-94-011-3410-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics