Skip to main content

Baryogenesis in the Universe

  • Conference paper
  • 258 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 169))

Abstract

A review of the models of baryogenesis is given. The content is the following: 1. Introduction and history. 2. Three principles of baryogenesis. 3. Heavy particle decays. 4. Baryogenesis with conserved baryonic charge. 5. Baryogenesis, inflation, and CP-violation. 6. Baryogenesis and large scale Universe structure. 7. Baryonic charge condensate. 8. Baryogenesis and CPT. 9. Baryosynthesis by topological defects. 10. Baryosynthesis on electroweak scale. 11. Conclusion

From October 1, 1990 to September 31, 1990, Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606, Japan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afleck, I. and Dine, M. (1985). A New Mechanism for Baryogenesis. Nucl. Phys. B249, 361–380.

    Article  ADS  Google Scholar 

  • Arnold, P. and McLerran, L. (1987). Sphalerons, Small Fluctuations, and Baryon Number Violation in Electroweak Theory. Phys. Rev. D36, 581–595.

    ADS  Google Scholar 

  • Bhattacharjee, R., Kibble, T.W., and Turok, N. (1982). Baryon Number Generation from Collapsing Cosmic Strings. Phys. Lett. B119, 95–96.

    ADS  Google Scholar 

  • Callan, C,G. (1982). Disappearing Dyons. Phys. Rev. D25, 2141–2146.

    ADS  Google Scholar 

  • Chizhov, M.V. and Dolgov, A.D. (1990). Baryogenesis and Large Scale Structure of the Universe. Submitted to ZhETF.

    Google Scholar 

  • Cohen, A. and Kaplan, D. (1988). Spontaneous Baryogenesis. Nucl. Phys. B308, 913–928.

    Article  ADS  Google Scholar 

  • Dashen, R., Hasslacher, B., and Neveu, A. (1974). Nonperturbative Methods and Extended Hadron Models in Field Theory. III. Four-Dimensional Nonabelian Models. Phys. Rev. D10, 4138–4142.

    ADS  Google Scholar 

  • Dimopoulos, S. and Hall, J. L. (1987). Baryogenesis at the MeV Era. Phys. Lett. 196B, 135–141.

    ADS  Google Scholar 

  • Dolgov, A.D. (1980a). Kinetics of Generation of Baryon Asymmetry of the Universe. Yadernaya Fizika 32, 1606–1621.

    Google Scholar 

  • Dolgov, A.D. (1980b). Quantum Evaporation of Black Holes and Baryon Asymmetry of the Universe. ZhETF, 79, 337–349.

    ADS  Google Scholar 

  • Dolgov, A.D., Illarionov, A.F., Kardashev, N.S., and Novikov, I.D. (1987). Cosmological Model of Baryonic Island. ZhETF. 94, 1–14.

    ADS  Google Scholar 

  • Dolgov, A.D. and Kardashev, N.S. (1986). Spontaneous Baryonic-Antibaryonic Symmetry Violation and the Island Universe Model. Space Reseacrh Int. Preprint-1190.

    Google Scholar 

  • Dolgov, A.D. and Kirilova D.P. (1989). Condensate of Baryonic Charge and Baryogenesis. Preprint JINR P2–89–873.

    Google Scholar 

  • Dolgov, A.D. and Linde, A.D. (1982). Baryon Asymmetry in the Inflationary Cosmology. Phys. Lett. 116B, 329–334.

    ADS  Google Scholar 

  • Efstathiou, G. and Bond, J.B. (1987). Microwave Anisotropy Constraints on Isocurvature Baryon Models. Mon. Not. Roy. Astr. Soc. 227, 33p-38p.

    ADS  Google Scholar 

  • Forgacs, P. and Horvath, Z. (1984). Topology and Saddle Points in Field Theories. Phys. Lett. 138B, 397–401.

    MathSciNet  ADS  Google Scholar 

  • Fukugita, M. and Yanagita, T. (1986). Baryogenesis without Grand Unification. Phys. Lett. 174B, 45–47.

    ADS  Google Scholar 

  • Gregory, R., Davis, A.C., and Brandenberger, R. (1988). Cosmic String Catalysis of Skyrmion Decay. Nucl. Phys. B323, 187–208.

    MathSciNet  ADS  Google Scholar 

  • Hawking, S.W. (1974). Black Hole Explosions? Nature. 248, 30–31.

    Article  ADS  Google Scholar 

  • Ignatiev, A,.Yu., Krasnikov, N.V., Kuzmin, V.A., and Tavkhelidze, A.N. (1978). Universal CP-Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe. Phys. Lett. 76B, 436–438.

    ADS  Google Scholar 

  • Kawasaki, M. and Maeda, K. (1988). Baryon Number Generation from Cosmic String Loops. Phys. Lett. 208B, 84–88.

    ADS  Google Scholar 

  • Klinkhamer, F.R. and Manton, N.S. (1984). A Saddle Point Solution in the Weinberg Salam Theory. Phys. Rev. D30, 2212–2220.

    ADS  Google Scholar 

  • Kolb, E.W. and Turner, M.S. (1983). Grand Unified Theories and the Origin of the Baryon Asymmetry. Ann. Rev. Nucl. Part. Sci. 33, 645–696.

    Article  ADS  Google Scholar 

  • Kolb, E.W. and Turner, M.S. (1987). Electroweak Anomaly and Lepton Asymmetry. Mod. Phys. Lett. A2, 285–291.

    Google Scholar 

  • Kuzmin, V.A. (1970). CP-Noninvariance and Baryon Asymmetry of the Universe. Pis’ma ZhETF. 12, 335–337.

    ADS  Google Scholar 

  • Kuzmin, V.A., Rubakov, V.A., and Shaposhnikov, M.E. (1985). On Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B155, 36–42.

    ADS  Google Scholar 

  • Lazarides, G., Panagiotakopoulos, C., and Shafi, Q. (1986). Baryogenesis and the Gravitino Problem in Superstring Models. Phys. Rev. Lett. 56, 557–560.

    Article  ADS  Google Scholar 

  • Lee, T.D. (1973). A Theory of Spontaneous T-Violation. Phys. Rev. D8, 1226–1239.

    ADS  Google Scholar 

  • Linde, A.D. (1982). Scalar Field Fluctuations in the Expanding Universe and the New Inflationary Universe Scenario. Phys. Lett. 116B, 335–339.

    MathSciNet  ADS  Google Scholar 

  • McLerran, L., Vainshtein, A., and Voloshin, M. (1990). Electroweak Interactions Become Strong at Energy above 10TeV. Phys. Rev. D42, 171–179.

    ADS  Google Scholar 

  • Mohapatra, C.N. and Valle, J.W.F. (1987). Late Baryogenesis in Superstring Models. Phys. Lett. 186B, 303–308.

    ADS  Google Scholar 

  • Perivolaropoulos, L., Matheson, A., Davis, A.C., and Brandenberger, R.H. (1990). Nonabelian Aharonov-Bohm Baryon Decay Catalysis. Phys. Lett. B245, 556–560.

    ADS  Google Scholar 

  • Ringwald, A. (1988). Rate of Anomalous Electroweak Baryon and Lepton Number Violation at Finite Temperature. Phys. Lett. B201, 510–516.

    ADS  Google Scholar 

  • Rubakov, V.A. (1981). Superheavy Magnetic Monopoles and Proton Decay. Pis’ma ZhETF. 33, 658–660.

    ADS  Google Scholar 

  • Rubakov, V.A. (1982). Adler-Bell-Jackiw Anomaly and Fermion Number Breaking in the Presence of a Magnetic Monopole. Nucl. Phys. B203, 311–348.

    Article  ADS  Google Scholar 

  • Sakharov, A.D. (1967). Breaking of CP-Invariance, C-Asymmetry, and Baryon Asymmetry of the Universe. Pis’ma ZhETF. 5, 32–35.

    ADS  Google Scholar 

  • Sato, K. (1981). Cosmological Baryon Number Domain Structure and the First Order Phase Transition of a Vacuum. Phys. Lett. 99B, 66–70.

    ADS  Google Scholar 

  • Shaposhnikov, M.E. (1987). Baryon Asymmetry of the Universe in Standard Electroweak Theory. Nucl. Phys. B287, 757–775.

    Article  ADS  Google Scholar 

  • Szalay, A. (1990). Proceedings of this Conference.

    Google Scholar 

  • Turner, M.S., Cohen, A.G. and Kaplan, D.B., (1989). Isocurvature Baryon Number Fluctuations in Inflationary Universe. Phys. Lett. B216, 20–26.

    ADS  Google Scholar 

  • Terasawa, N. and Sato, K. (1988). Lepton and Baryon Number Asymmetry of the Universe and Primordial Nucleosynthesis. Prog. Theor. Phys. 80, 468–476.

    Article  ADS  Google Scholar 

  • T’Hooft, G. (1976a). Symmetry Breaking through Bell-Jackiw Anomalies. Phys. Rev. Lett. 37, 8–11.

    Article  ADS  Google Scholar 

  • T’Hooft, G. (1976b). Computation of the Quantum Effects due to a Four-Dimensional Pseudoparticle. Phys. Rev. D14, 3432–3450.

    ADS  Google Scholar 

  • Vilenkin, A. and Ford, L.H. (1982). Gravitational Effects upon Cosmological Phase Transition. Phys. Rev. D26, 1231–1241.

    MathSciNet  ADS  Google Scholar 

  • Yamamoto, K. (1987). A Model for Baryogenesis in Superstring Unification. Phys. Lett. 194B, 390–396.

    ADS  Google Scholar 

  • Yokoyama, J., Kodama, H., Sato, K., and Sato, N. (1987). Baryogenesis in the Inflationary Universe. The Instantaneous Reheating Model. Int. J. Mod. Phys. A2, 1808–1828.

    ADS  Google Scholar 

  • Yokoyama, J., Kodama, H., and Sato, K. (1988). Baryogenesis through Nonequilibrium Processes in Inflationary Universe. Prog. Theor. Phys. 79, 800–818.

    Article  ADS  Google Scholar 

  • Yoshimura, M. (1978). Unified Gauge Theory and the Baryon Number of the Universe. Phys. Rev. Lett. 41, 281–284; 42, 746 (Erratum).

    Article  ADS  Google Scholar 

  • Zakharov, V. (1990). Classical Corrections to Instanton Induced Interactions. Preprint TPI-MINN-90/7-T.

    Google Scholar 

  • Zel’dovich, Ya.B. (1976). Charge Asymmetry of the Universe as a Result of Black Hole Evaporation and the Asymmetry of Weak Interactions. Pis’ma ZhETF. 24, 29–32.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dolgov, A.D. (1991). Baryogenesis in the Universe. In: Sato, K., Audouze, J. (eds) Primordial Nucleosynthesis and Evolution of Early Universe. Astrophysics and Space Science Library, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3410-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3410-1_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5509-3

  • Online ISBN: 978-94-011-3410-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics