Skip to main content

Extended Inflationary Cosmology: A Primer

  • Conference paper
  • 246 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 169))

Abstract

New approaches to inflationary cosmology have been developed which may ultimately solve the fine-tuning problem that plagues previous inflationary models. The distinctive feature is that the the inflationary phase transition is completed by bubble nucleation. The bubbles may lead to some interesting effects in the post-inflationary universe, including new seeds for galaxy formation and a unique gravitational wave signature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review of conventional inflation models, see A. D. Linde, Particle Physics and Inflationary Cosmology, ( Gordon and Breach, New York, 1990 ).

    Google Scholar 

  2. A. H. Guth, Phys. Rev. D23, 347 (1981).

    Article  ADS  Google Scholar 

  3. A. D. Linde, Phys. Lett. 108B, 389 (1982);

    MathSciNet  ADS  Google Scholar 

  4. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  5. A. D. Linde, Phys. Lett. 129B, 177 (1983).

    MathSciNet  ADS  Google Scholar 

  6. Examples of variants include inflation driven by quantum cosmology, J. B. Hartle, and S.W. Hawking, Phys. Rev. D 28, 2960, (1983);

    Article  MathSciNet  ADS  Google Scholar 

  7. or power-law inflation, L. F. Abbott and M. B. Wise, Nucl. Phys. B 244, 541 (1984)

    Article  ADS  Google Scholar 

  8. F. Lucchin and S. Mataresse, Phys. Rev. D 32, 1316 (1985);

    Article  ADS  Google Scholar 

  9. or induced-gravity inflation, F. S. Accetta, D. J. Zoller, and M. S. Turner, Phys. Rev. D 31, 3046 (1985)

    Article  ADS  Google Scholar 

  10. F. Lucchin, S. Matarese, and M. D. Pollock, Phys. Lett. 167B, 163 (1986).

    ADS  Google Scholar 

  11. P. J. Steinhardt and M. S. Turner, Phys. Rev. D29, 2162 (1984).

    Article  ADS  Google Scholar 

  12. D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).

    Article  ADS  Google Scholar 

  13. R. Holman, E. W. Kolb, S. L. Vadas, and Y. Wang, Fermilab Preprint FNALPUB-90/147-A (1990).

    Google Scholar 

  14. P. J. Steinhardt and F. S. Accetta, Phys. Rev. Lett. 64, 2740 (1990);

    Article  ADS  Google Scholar 

  15. see also J. D. Barrow and K. Maeda, Preprint WU-AP/04/89;

    Google Scholar 

  16. J. Garcia-Bellido and M. Quiros, CERN preprint TH.5674/90 (1990).

    Google Scholar 

  17. F. C. Adams and K. Freese, MIT Preprint (1990).

    Google Scholar 

  18. A. H. Guth and E. J. Weinberg, Nucl. Phys. B212, 321, (1983).

    Article  ADS  Google Scholar 

  19. A. D. Linde, Phys. Lett. B70, 306 (1977);

    ADS  Google Scholar 

  20. A. H. Guth and E. J. Weinberg, Phys. Rev. Lett. 45, 1131 (1980);

    Article  ADS  Google Scholar 

  21. P. J. Steinhardt, Nucl. Phys. B179, 492 (1981).

    Article  ADS  Google Scholar 

  22. F. C. Adams, K. Freese and A. H. Guth, MIT Preprint (1990).

    Google Scholar 

  23. L. A. Kofman and A. D. Linde, Nucl. Phys. B282, 555 (1987);

    Article  ADS  Google Scholar 

  24. E. T. Vishniac, K Olive and D. Seckel, Nucl. Phys. 289, 717 (1987);

    Google Scholar 

  25. L. A. Kofman, A. D. Linde, and J. Einasto, Nature 326, 48 (1987).

    Article  ADS  Google Scholar 

  26. C. Brans and R. H. Dicke, Phys. Rev. 24, 924 (1961).

    MathSciNet  Google Scholar 

  27. R. D. Reasenberg, et al., Astrophys. J. 234, L219 (1979).

    Article  ADS  Google Scholar 

  28. See, for example, M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory: 2(Cambirdge Univ. Press, Cambridge, 1987 ), pp. 326–330, 403–404.

    MATH  Google Scholar 

  29. B. Whitt, Phys. Lett. 145B, 176 (1984);

    MathSciNet  ADS  Google Scholar 

  30. K. Maeda, Phys. Rev. D39, 3159 (1989).

    ADS  Google Scholar 

  31. J. Bardeen, P. J. Steinhardt and M. S. Turner, Phys. Rev. D 28, 679 (1983);

    Article  ADS  Google Scholar 

  32. A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982);

    Article  ADS  Google Scholar 

  33. A. A. Starobinskii, Phys. Lett. B 117, 175 (1982);

    Article  ADS  Google Scholar 

  34. S. W. Hawking, Phys. Lett. B 115, 295 (1982).

    Article  ADS  Google Scholar 

  35. D. La, P. J. Steinhardt, and E. W. Bertschinger, Phys. Lett. B 231, 231 (1989).

    Article  ADS  Google Scholar 

  36. E. W. Kolb, D. S. Salopek and M. S. Turner, Fermilab Preprint, FNAL-PUB90/116-A (1990).

    Google Scholar 

  37. J.-C. Hwang, U. of Texas Preprint (1990).

    Google Scholar 

  38. D. La and P. J. Steinhardt, Phys. Lett. B 220, 375, (1989).

    Article  ADS  Google Scholar 

  39. E. J. Weinberg, Phys. Rev. D 40, 3950 (1989).

    Article  ADS  Google Scholar 

  40. See, for example, D. S. Salopek, J. R. Bond, and J. M. Bardeen, Phys. Rev. D 40, 1953 (1989);

    Article  ADS  Google Scholar 

  41. A. A. Starobinskii, Pis’ma Zh. Eksp. Teor. Fiz. 42, 399 (1989) [JETP Lett. 42, 152 (1985)].

    Google Scholar 

  42. See, for example, discussions by J. Audouze and. G. Steigman in these proceedings.

    Google Scholar 

  43. F. S. Accetta, L. M. Krauss and P. Romanelli, Yale preprint YCTP-P1–90, to appear, Phys. Lett., (1990).

    Google Scholar 

  44. M. S. Turner and F. Wilczek, Fermilab Preprint (1990).

    Google Scholar 

  45. E. W. Kolb, private communication.

    Google Scholar 

  46. J. D. Barrow, E. J. Copeland, E. W. Kolb, and A. R. Liddle, FNAL-PUB90/98-A (1990);

    Google Scholar 

  47. E. J. Copeland, E. W. Kolb, and A. R. Liddle, FNAL-PUB90/56-A (1990).

    Google Scholar 

  48. T. J. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  MATH  Google Scholar 

  49. M. Morikawa, Univ. of British Columbia preprints 90–0208 and 90–0380 (1990). See also contribution in this proceedings.

    Google Scholar 

  50. C. T. Hill, P. J. Steinhardt and M. S. Turner, Fermilab Preprint, FNAL-PUB90/129-T (1990).

    Google Scholar 

  51. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay, Nature 343, 726 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Steinhardt, P.J. (1991). Extended Inflationary Cosmology: A Primer. In: Sato, K., Audouze, J. (eds) Primordial Nucleosynthesis and Evolution of Early Universe. Astrophysics and Space Science Library, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3410-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3410-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5509-3

  • Online ISBN: 978-94-011-3410-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics