Skip to main content

Directed Mutation in Escherichia Coli: Theory and Mechanisms

  • Chapter
Organism and the Origins of Self

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 129))

Abstract

For a haploid unicellular organism, such as Escherichia coli, that reproduces asexually by binary fission, the concept of “self”, or more appropriately, “individual”, may be indistinguishable from the concept of organism. Controversy has arisen in the past about whether and how such creatures maintain themselves as a species since every new mutant that appears could, theoretically, give rise to a clone of unique descendants. Indeed, based largely upon protein electrophoresis patterns it has been estimated that the worldwide population of E. coli consists of only 102–103 such clones [1]. This result implies that E. coli in the wild rarely engage in chromosomal recombination, and that the genetic exchanges that take place via extrachromosomal elements leave chromosomal genes largely unchanged [1, 2]. (However, see Reference 3 for an alternative interpretation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selander, R.K., Caugant, D.A., and Whittam, T.S. 1987. Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology. J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, editors. American Society for Microbiology, Washington, DC. 1625–1648.

    Google Scholar 

  2. Ochman, H., and Wilson, A.C. 1987. Evolutionary history of enteric bacteria. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology. J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, editors. American Society for Microbiology, Washington, DC. 1649–1654.

    Google Scholar 

  3. Milkman, R., and Stoltzfus, A. 1988. Molecular evolution of the Escherichia coli chromosome. II. Clonal segments. Genetics 120: 359–366.

    PubMed  CAS  Google Scholar 

  4. Rayssiguier, C., Thaler, D.S., and Radman, M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature (London) 342: 396–400.

    Article  CAS  Google Scholar 

  5. Drake, J.W. 1969. Comparative rates of spontaneous mutation. Nature (London) 221: 1132.

    Google Scholar 

  6. Topal, M.D., and Fresco, J.R. 1976. Complementary base pairing and the origin of substitution mutations. Nature (London) 263: 285–289.

    Article  CAS  Google Scholar 

  7. Fersht, A.R., Knill-Jones, J.W., and Tsui, W-C. 1982. Kinetic basis of spontaneous mutation: Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. J. Molec. Biol. 156: 37–51.

    Article  PubMed  CAS  Google Scholar 

  8. Cox, E.C. 1976. Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10: 135–156.

    Article  PubMed  CAS  Google Scholar 

  9. Choy, H.E., and Fowler, R.G. 1985. The specificity of base pair substitutions induced by the mutL and mutS mutators in E. coli. Mutat. Res. 142: 93–97.

    Article  CAS  Google Scholar 

  10. Radman, M., and Wagner, R.E., Jr. 1986. Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20: 523–538.

    CAS  Google Scholar 

  11. Ogden, G.B., Pratt, M.J., and Schaechter, M. 1988. The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54: 127–135.

    Article  PubMed  CAS  Google Scholar 

  12. Drake, J.W., and Allen, E.F. 1968. Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33: 339–344.

    PubMed  CAS  Google Scholar 

  13. Cox, E.C., and Gibson, T.C. 1974. Selection for high mutation rates in chemostats. Genetics 11: 169–184.

    Google Scholar 

  14. Leigh, E.G. 1970. Natural selection and mutability. Am. Natural. 104: 301–305.

    Article  Google Scholar 

  15. Geiger, J.R., and Speyer, J.F. 1977. A conditional antimutator in E. coli. Molec. Gen. Genet. 153: 87–97.

    Article  CAS  Google Scholar 

  16. Campbell, A.N. 1983. Transposons and their evolutionary significance. In Evolution of Genes and Proteins. M. Nei, and R.K. Koehn, editors. Sinauer Associates, Sunderland, MA, 259–279.

    Google Scholar 

  17. Chao, L., Vargas, C., Spear, B.B., and Cox, E.C. 1983. Transposable elements as mutator genes in evolution. Nature (London) 303: 633–635.

    Article  CAS  Google Scholar 

  18. Messer, W., and Noyer-Weidner, M. 1988. Timing and targeting: The biological functions of dam methylation in E. coli. Cell 54: 735–737.

    CAS  Google Scholar 

  19. Delbrück, M. 1946. Heredity and variations in microorganisms, Cold Spring Harbor Symp. Quant. Biol. 11: 154.

    Google Scholar 

  20. Shapiro, J.A. 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.

    Article  PubMed  CAS  Google Scholar 

  21. Cairns, J., Overbaugh, J., and Miller, S. 1988. The origin of mutants. Nature (London) 335: 142–145.

    Article  CAS  Google Scholar 

  22. Cairns, J. 1988. Scientific correspondence. Nature (London) 336: 527–528.

    Article  Google Scholar 

  23. Walker, G.C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60–93.

    CAS  Google Scholar 

  24. Burckhardt, S.E., Woodgate, R., Scheuermann, R.H., and Echols, H. 1988. UmuD mutagenesis protein of Escherichia coli: Overproduction, purification, and cleavage by RecA. Proc. Natl. Acad. Sci. USA 85: 1811–1815.

    Article  CAS  Google Scholar 

  25. Nohmi, T., Battista, J.R., Dodson, L.A., and Walker, G.C. 1988. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. USA 85: 1816–1820.

    Article  PubMed  CAS  Google Scholar 

  26. Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A. 1988. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. Natl. Acad. Sci. USA 85: 1806–1810.

    Article  PubMed  CAS  Google Scholar 

  27. Freitag, N., and McEntee, K. 1989. “Activated”-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins. Proc. Natl. Acad. Sci. USA 86: 8363–8367.

    Article  PubMed  Google Scholar 

  28. Bridges, B.A. 1988. Mutagenic DNA repair in Escherichia coli XVI. Mutagenesis by ultraviolet light plus delayed photoreversal in recA strains. Mutat. Res. 198: 343–350.

    PubMed  CAS  Google Scholar 

  29. Dutreix, M.P., Moreau, P.L., Bailone, A., Galibert, F., Battista, J.R., Walker, G.C., and Devoret, R. 1989. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV-mutagenesis. J. Bacteriol. 171: 2415–2423.

    PubMed  CAS  Google Scholar 

  30. Villani, G., Bouteux, S., and Radman, M. 1975. Mechanisms of ultraviolet induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. USA 78: 3037–3041.

    Google Scholar 

  31. Fersht, A.R., and Knill-Jones, J.W. 1983. Contribution of 3’ → 5’ exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J. Molec. Biol. 165: 669–682.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, C., Scheuermann, R.H., and Echols, H. 1986. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III: A possible mechanism for SOS-induced targeted mutagenesis. Proc. Natl. Acad. Sci. USA 83: 619–623.

    Article  PubMed  CAS  Google Scholar 

  33. Foster, P.L., and Sullivan, A.D. 1988. Interactions between epsilon, the proofreading subunit of DNA polymerase III, and proteins involved in the SOS response of Escherichia coli. Molec. Gen. Genet. 214: 467–473.

    CAS  Google Scholar 

  34. Foster, P.L., Sullivan, A.D., and Franklin, S.B. 1989. Presence of the dnaQ-rnh divergent transcriptional unit on a multicopy plasmid inhibits induced mutagenesis in Escherichia coli. J. Bacteriol. 171: 3144–3151.

    CAS  Google Scholar 

  35. Bridges, B.A., and Woodgate, R. 1985. Mutagenic repair in Escherichia coli: Products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc. Natl. Acad. Sci. USA 82: 4193–4197.

    Article  PubMed  CAS  Google Scholar 

  36. Battista, J.F., Nohmi, T., Donnelly, C.E., and Walker, G.C. 1989. Role of UmuD and UmuC in UV and chemical mutagenesis. In Mechanism and Consequences of DNA Damage Processing. E. Friedberg, and P. Hanawalt, editors. Liss, New York. 455–459.

    Google Scholar 

  37. Foster, P.L., Eisenstadt, E., and Cairns, J. 1982. Random components in mutagenesis. Nature (London) 299: 365–367.

    Article  CAS  Google Scholar 

  38. Miller, J.H. 1982. Carcinogens induce targeted mutations. Cell 31: 5–7.

    Article  PubMed  CAS  Google Scholar 

  39. Eisenstadt, E. 1988. SOS mutagenesis in Escherichia coli occurs primarily, perhaps exclusively, at sites of DNA damage. In DNA Replication and Mutagenesis. R.E. Moses, and W.C. Summers, editors. American Society for Microbiology, Washington, DC. 397–402.

    Google Scholar 

  40. Miller, J.H., and Low, K.B. 1984. Specificity of mutagenesis resulting from the induction of the SOS system in the absence of mutagenic treatment. Cell 37: 675–682.

    Article  PubMed  CAS  Google Scholar 

  41. Ghosh, S.K., Panda, D.K., and Das, J. 1989. Lack of umuDC gene functions in Vibrio cholerae cells. Mutat. Res. 210: 149–156.

    PubMed  CAS  Google Scholar 

  42. Sedgwick, S.G., and Goodwin, P.A. 1985. Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc. Natl. Acad. Sci. USA 82: 4172–4176.

    Article  PubMed  CAS  Google Scholar 

  43. Molina, A.N., Baburdrl, M., Tamaro, M., Venturini, S., and Monti-Bragadin, C. 1979. Enterobacteriacea plasmids enhancing chemical mutagenesis and their distribution among incompatability groups. FEMS Lett. 5: 33–37.

    Article  Google Scholar 

  44. Upton, C., and Pinney, R.J. 1980. Expression of eight unrelated+ Muc plasmids in eleven DNA repair deficient Escherichia coli strains. Mutat. Res. 112: 261–273.

    Google Scholar 

  45. Strike, P., and Lodwick, D. 1987. Plasmid genes affecting DNA repair and mutation. J. Cell Sci. 6 (Suppl.): 303–321.

    CAS  Google Scholar 

  46. Danchin, A. 1988. Scientific correspondence. Nature (London) 336: 527–527.

    Article  Google Scholar 

  47. Hall, B.G. 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    PubMed  CAS  Google Scholar 

  48. Hall, B.G., Yokoyama, S., and Calhoun, D.H. 1983. Role of cryptic genes in microbial evolution. Molec. Biolog. Evolution 1: 109–124.

    CAS  Google Scholar 

  49. Hall, B.G. 1982. Evolution on a petri dish. In Evolutionary Biology. Vol. 15. M.K. Hecht, B. Wallace, and G.T. Prance, editors. Plenum Press, New York. 85–150.

    Google Scholar 

  50. Ryan, F.J., Okada, T., and Nagata, T. 1963. Spontaneous mutation in spheroplasts of Escherichia coli. J. gen. Microbiol. 30: 193–199.

    PubMed  CAS  Google Scholar 

  51. Arber, V., Iida, S., Jutte, H., Caspers, P., Meyer, J., and Hanni, C. 1978. Rearrangements of genetic material in Eschericia coli as observed on the bacteriophage P1 plasmid. Cold Spring Harbor Symp. Quant. Biol. 43: 1197–1208.

    Google Scholar 

  52. Hall, B.G. 1990. Spontaneous point mutations that occur more often when they are advantageous than when they are neutral. Genetics 126: 5–16.

    PubMed  CAS  Google Scholar 

  53. Groat, R.G., Schultz, J.E., Zychlinsky, E., Bockman, A., and Matin, A. 1986. Starvation proteins in Escherichia coli: Kinetics of synthesis and role in starvation survival. J. Bacteriol. 168: 486–493.

    PubMed  CAS  Google Scholar 

  54. Koch, A.L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6: 147–217.

    Article  PubMed  CAS  Google Scholar 

  55. Lim, D., and Maas, W.K. 1989. Reverse transcriptase-dependent synthesis of a covalently linked, branced DNA-RNA compound in E. coli B. Cell 56: 891–904.

    Article  PubMed  CAS  Google Scholar 

  56. Lampson, B.C., Sun, J., Hsu, M-Y, Vallejo-Ramirez, J., Inouye, S., and Inouye, M. 1989. Reverse transcriptase in a clinical strain of Escherichia coli: Production of branched RNA-linked msDNA. Science 243: 1033–1038.

    Article  PubMed  CAS  Google Scholar 

  57. Stahl, F.W. 1988. A unicorn in the garden. Nature (London) 335: 112–113.

    Article  CAS  Google Scholar 

  58. Davis, B.D. 1989. Transcriptional bias: A non-Lamarckian mechanism for substrate-induced mutations. Proc. Natl. Acad. Sci. USA 86: 5005–5009.

    Article  PubMed  CAS  Google Scholar 

  59. Fitch, W.M. 1982. The challenges to Darwinism since the last centennial and the impact of molecular studies. Evolution 36(6): 1133–1143,

    Article  Google Scholar 

  60. Crick, F.H.C. 1957. On protein synthesis. Symp. Soc. Exp. Biol. 12: 138–163.

    Google Scholar 

  61. Temin, H.M. 1971. The protovirus hypothesis: Speculations on the significance of RNA-directed DNA synthesis for normal development and carcinogenesis. J. Natl. Cancer Inst. 46: iii.

    CAS  Google Scholar 

  62. Reanney, D. 1984. Genetic noise in evolution?. Nature (London) 307: 318–319.

    Article  CAS  Google Scholar 

  63. Postgate, J. 1967. Viability measurements and the survival of microbes under minimum stress, Adv. Microb. Physiol. 1: 1–23.

    Article  Google Scholar 

  64. Charlesworth, D., Charlesworth, B., and Bull, J.J. 1988. Scientific correspondence. Nature (London) 336: 525–525.

    Article  Google Scholar 

  65. Tessman, I. 1988. Scientific correspondence. Nature (London) 336: 527–527.

    Article  Google Scholar 

  66. Lenski, R.E., Slatkin, M., and Ayala, F.J. 1989. Mutation and selection in bacterial populations: Alternatives to the hypothesis of directed mutation. Proc. Natl. Acad. Sci. USA 86: 2775–2778.

    Article  PubMed  CAS  Google Scholar 

  67. Lenski, R.E., and Mittler, J.E. 1990. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature (London) 344: 173–175.

    Article  Google Scholar 

  68. Levin, B.R., Gordon, D.M., and Stewart, F.M. 1990. Is natural selction the composer as well as the editor of genetic variation? (in press).

    Google Scholar 

  69. Hall, B.G. 1989. Selection, adaptation, and bacterial operons. Genome 31: 265–271.

    Article  PubMed  CAS  Google Scholar 

  70. Benson, S.A. 1988. Scientific correspondence. Nature (London) 336: 21–22.

    Article  Google Scholar 

  71. Cullis, C.A. 1987. The generation of somatic and heritable variation in reponse to stress. Am. Natural. 130: s62–s73.

    Article  Google Scholar 

  72. Cairns, J., and Foster, P.L. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Foster, P.L. (1991). Directed Mutation in Escherichia Coli: Theory and Mechanisms. In: Tauber, A.I. (eds) Organism and the Origins of Self. Boston Studies in the Philosophy of Science, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3406-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3406-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1185-0

  • Online ISBN: 978-94-011-3406-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics