Skip to main content

Photochemical Conversion of Solar Energy in the Environment

  • Conference paper
Photochemical Conversion and Storage of Solar Energy

Abstract

Past research on photochemistry in the environment has focused on vapor-phase reactions in the atmosphere. Recently, however, environmentally significant photoreactions have been discovered in natural waters (i.e. the sea, lakes, rivers), on soil surfaces, and in atmospheric condensed phases. These new investigations have been stimulated in part by interest in developing a scientific understanding of the role of photochemical processes in the biogeochemical cycles of various elements. In addition, other studies have explored the role of natural photochemical processes in cleansing the environment of various waste materials or, in some cases, in converting the wastes to more toxic substances. In this paper, current research results on the photochemical conversion of solar energy in aquatic environments and on soil and metal oxide surfaces are presented. Rate equations and products for selected homogeneous and heterogeneous photoreactions that occur in these systems are described. Data are presented for direct and sensitized photoreactions and for sunlight-initiated free radical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrhenius, S.A. (1903) Kosmische Physik, 2.

    Google Scholar 

  • Balzani, V. and Moggi, L. (1990) ‘Photochemistry of coordination compounds: A glance at past, present, and future’, Coord. Chem. Rev. 97, 313–325.

    Article  CAS  Google Scholar 

  • Baker, K.S. and Smith, R.C. (1982) ‘Spectral irradiance penetration in natural waters’, in J. Calkins (ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems, Plenum Press, New York, pp. 79–91.

    Google Scholar 

  • Behra, P. and Sigg, L. (1990) ‘Evidence for redox cycling of iron in atmospheric water droplets’, Nature, 344, 419–421.

    Article  CAS  Google Scholar 

  • Berrenbaum, M.R. and Larson, R.A. (1988) ‘Flux of singlet oxygen from leaves of phototoxic plants’, Experentia 44, 1030–1031.

    Article  Google Scholar 

  • Bertino, D.J. and Zepp, R.G. (1990) ‘Effect of solar radiation on manganese oxide reactions with organic compounds’ submitted for publication.

    Google Scholar 

  • Blough, N.V. (1988) ‘Electron paramagnetic resonance measurements of photochemical radical production in humic substances. 1. Effects of 02 and charge on radical scavenging by nitroxides’, Environ. Sci. Technol., 22, 77–82.

    Article  CAS  Google Scholar 

  • Brand, L.E.; Sunda, W.G. and Guillard, R.R.L. (1986) ‘Reduction of marine phytoplankton reproduction rates by copper and cadmium’, J. Exp. Mar. Biol. Ecol., 96, 225–250.

    Article  CAS  Google Scholar 

  • Carder, K.L., Steward, R.G.; Harvey, G.R. and Ortner, P.B. (1989) ‘Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll’, Limnol. Oceanogr., 34, 68–81.

    Article  CAS  Google Scholar 

  • Calvert, J.G.; Lazrus, A.; Kok, G.L.; Heikes, B.G.; Walega, J.G.; Lind, J. and Cantrell, C.A. (1985) ‘Chemical mechanisms of acid generation in the troposphere’, Nature, 317, 27–35.

    Article  CAS  Google Scholar 

  • Chameides, W.L. and Davis, D.D. (1982) ‘The free radical chemistry of cloud droplets and its impact upon the composition of rain’, J. Geophys. Res., 87, 4863–4877.

    Article  CAS  Google Scholar 

  • Ciamician, G. (1912) ‘The photochemistry of the future’, Science 36, 385–394.

    Article  CAS  Google Scholar 

  • Conrad, R.; Seiler, W.; Bunse, G. and Giehl, H. (1982) ‘Carbon monoxide in sea water (Atlantic Ocean)’, J. Geophys. Res., 87, 8839–8852.

    Article  CAS  Google Scholar 

  • Cooper, W.J. and Zepp, R.G. (1990) ‘Hydrogen peroxide decay in waters with suspended soils: Evidence for biologically-mediated processes’, Can. J. Fish. Aq. Sci., 47, 888–893.

    Article  CAS  Google Scholar 

  • Cooper, W.J.; Zika, R.G.; Petasne, R.G. and Fischer, A.M. (1989) ‘Sunlight induced photochemistry of humic substances in natural waters: major reactive species’, in P. MacCarthy and I.H. Suffet (eds.), Influence of Aquatic Humic Substances on Fate and Treatment of Pollutants, ACS Symposium Series 219, Washington, D.C., pp. 333–362.

    Chapter  Google Scholar 

  • Crutzen, P.J. and Lelieveld, J. (1990) ‘Influences of cloud photochemical processes on tropospheric ozone’, Woods Hole Oceanographic Institution Report No. WHOI-90-09, January 1990, pp. 39–41; Nature, in press.

    Google Scholar 

  • Dawson, J.H. (1988) ‘Probing structure-function relations in Heme-containing oxygenases and peroxidases’, Science, 240, 433–439.

    Article  CAS  Google Scholar 

  • Donard, O.F.X.; Belin, C. and Ewald, M. (1987) ‘Corrected fluorescence excitation spectra of fulvic acids. Comparison with the UV/visible absorption spectra’, Sci. Tot. Environ., 62, 157–161.

    Article  CAS  Google Scholar 

  • Ertel, J.R. (1990) ‘Photochemistry of dissolved organic matter: An organic geochemical perspective’, Woods Hole Oceanographie Institution Report No. WHOI-90-09, January 1990, pp.77–78.

    Google Scholar 

  • Faust, B.C. and Allen, J.M. (1990) “Aqueous-phase photochemical sources of oxidants in clouds” Woods Hole Oceanographie Institution Report No. WHOI-90-09, pp. 48–50.

    Google Scholar 

  • Faust, B.C. and Hoigné, J. (1990) ‘Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain’, Atmos. Environ., 24A, 79–89.

    CAS  Google Scholar 

  • Faust, B.C.; Hoffmann, M.R. and Bahnemann, D.W. (1989) ‘Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α - Fe203’, J. Phys. Chem., 93, 6371–6381.

    Article  CAS  Google Scholar 

  • Faust, B.C. and Hoigné, J. (1987), “Sensitized photooxidation of phenols by fulvic acid and in natural waters”, Environ. Sci. Technol., 21, 957–964.

    Article  CAS  Google Scholar 

  • Ferek, R.J. and Andreae, M.O. (1984) ‘Photochemical production of carbonyl sulfide in marine surface waters’, Nature, 307, 148–150.

    Article  CAS  Google Scholar 

  • Fischer, A.M.; Winterle, J.S. and Mill, T. (1987) ‘Primary photochemical processes in photolysis mediated by humic substances’, in R.G. Zika and W.J. Cooper (eds.), Photochemistry of Environmental Aquatic Systems, ACS Symposium Series 327, pp. 141–156.

    Chapter  Google Scholar 

  • Frimmel, F. and Bauer, H. (1987) ‘Influence of photochemical reactions on the optical properties of aquatic humic substances gained from fall leaves’, Sci. Tot. Environ., 62, 139–148.

    Article  CAS  Google Scholar 

  • Frimmel, F.H.; Bauer, H.; Putzien, J.; Murasecco, P. and Braun, A.M. (1987) ‘Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen’, Environ. Sci. Technol., 541–545.

    Google Scholar 

  • Gammon, R.H. and Kelley, K.C. (1988) ‘Reassessment of the flux of CO from the global ocean to the atmosphere’, Trans. Am. Geophys. Union, 69, 1072.

    Google Scholar 

  • Gauthier, T.D.; Shane, E.C.; Guerin, W.F.; Seitz, W.R.; and Grant, C.L. (1986) ‘Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials’, Environ. Sci. Technol., 20, 1162–1166.

    Article  CAS  Google Scholar 

  • Gjessing, E.T. (1976) ‘Physical and Chemical Characteristics of Aquatic Humus’, Ann Arbor: Ann Arbor Sci. Publisher Inc.

    Google Scholar 

  • Gohre, K.; Scholl, R. and Miller, G.C. (1986) ‘Singlet oxygen reactions on irradiated soil surfaces’, Environ. Sci. Technol., 20, 934–938.

    Article  CAS  Google Scholar 

  • Graedel, T.E. and Weschler, C.J. (1981) ‘Chemistry within aqueous atmospheric aerosols and raindrops’, Rev. Geophys. Space Phys., 19, 505–538.

    Article  CAS  Google Scholar 

  • Gschwend, P. M.; MacFarlane, J. K. and Newman, K. A. (1985) ‘Volatile halogenated organic compounds released to seawater from temperate marine macroalgae’, Science, 227, 1033–1035.

    Article  CAS  Google Scholar 

  • Gunther, F.A.; Iwata, Y.; Carman, G.E. and Smith, C.A. (1977) ‘The citrus reentry problem: Research on its causes and effects, and approaches to its minimization’, Residue Reviews, 67, 1–139.

    Article  CAS  Google Scholar 

  • Haag, W.R. and Hoigné, J. (1986) ‘Singlet oxygen in surface waters — Part III. Photochemical formation and steady-state concentrations in various types of waters’, Environ. Sci. Technol., 20, 341–348.

    Article  CAS  Google Scholar 

  • Haag, W.R.; Hoigné, J.; Gassmann, E. and Braun, A.M. (1984) ‘Singlet oxygen in surface waters. Part II: Quantum yields of its production’, Chemosphere, 13, 641–650.

    Article  CAS  Google Scholar 

  • Heindel, N.D. and Pfau, M. (1965) ‘A profitable partnership: Giacomo Ciamician and Paul Silber’, J. Chem. Ed. 42, 383–385.

    Article  CAS  Google Scholar 

  • Hoigné, J.; Faust, B.C.; Haag, W.R. and Zepp, R.G. (1989) ‘Aquatic humic substances as sources and sinks of photochemically produced transient reactants’, in P. MacCarthy and I.H. Suffet (eds.), Influence of Aquatic Humic Substances on Fate and Treatment of Pollutants, ACS Symposium Series 219, Washington, D.C. pp. 363–384.

    Chapter  Google Scholar 

  • Hong, H. and Rester, D.R. (1986) ‘Redox state of iron in the offshore waters of Peru’, Limnol. Oceanogr., 31(3), 512–524.

    Article  CAS  Google Scholar 

  • Kanner, R.; Zepp, R.G. and Foote, C.S. (1989) ‘Laser flash photolytic studies of singlet molecular oxygen production from humic substances’, in preparation.

    Google Scholar 

  • Kieber, D.J.; McDaniel, J.A. and Mopper, K. (1989) ‘Photochemical source of biological substrates in seawater: Implications for carbon cycling’, Nature, 341, 637–639.

    Article  CAS  Google Scholar 

  • Kormann, C.; Bahnemann, D.W. and Hoffmann, M.R. (1988) ‘Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand’, Environ. Sci. Technol., 22, 798–806.

    Article  CAS  Google Scholar 

  • Kouassi, A.M. (1986) ‘Light induced alteration of the photophysical properties of dissolved organic matter in seawater’, M.S. Thesis, Univ. of Miami, Coral Gables, FL.

    Google Scholar 

  • Kouassi, M.; Zika, R.G.; Plane, J.M.C. and Gidel, L. (1986) ‘Photochemical modelling of marine humus fluorescence in the ocean’, Trans. Am. Geophys. U., 66, 1266.

    Google Scholar 

  • Larson, R.A. and Zepp, R.G. (1988) ‘Reactivity of the carbonate radical with aniline derivatives’, Environ. Toxicol. Chem., 7, 265–274.

    Article  CAS  Google Scholar 

  • Leighton, P.A. (1961) ‘Photochemistry of Air Pollution’, Academic Press, New York.

    Google Scholar 

  • Leland, J.K. and Bard, A.J. (1987) ‘Photochemistry of colloidal semiconducting iron oxide polymorphs’, J. Am. Chem. Soc., 91, 50–76.

    Google Scholar 

  • Martin, J.H. and Fitzwater, S.E. (1988) ‘Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic’, Nature, 331, 341–343.

    Article  CAS  Google Scholar 

  • McKnight, D.M.; Kimball, B.A. and Bencala, K.E. (1988) ‘Iron photoreduction and oxidation in an acidic mountain stream’, Science, 240, 637.

    Article  CAS  Google Scholar 

  • Mill, T.; Hendry, D.G. and Richardson, H. (1980) ‘Free radical oxidants in natural waters’, Science, 207, 886–887.

    Article  CAS  Google Scholar 

  • Miller, G.C.; Hebert, V.R. and Miller, W.W. (1989) ‘Effect of sunlight on organic contaminants at the atmosphere-soil interface’, in Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America Special Publication No. 622, pp. 99–110.

    Google Scholar 

  • Miller, G. C. and Zepp, R. G. (1979), Effects of suspended sediments on photolysis rates of dissolved pollutants. Water Res. 13: 453–459.

    Article  CAS  Google Scholar 

  • Milne, P.J., Odum, D.S.; and Zika, R.G. (1987) ‘Time-resolved fluorescence measurements on dissolved marine organic matter’, in R.G. Zika and W.J. Cooper (eds.), Photochemistry of Environmental Aquatic Systems, ACS Symnposium Series 327, Washington, D.C., pp. 132–140.

    Chapter  Google Scholar 

  • Moffett, J.W. and Zika, R.G. (1987) ‘Reaction kinetics of hydrogen peroxide with copper and iron in seawater’, Environ. Sci. Technol., 21(8), 804–810.

    Article  CAS  Google Scholar 

  • Mopper, K. and Kieber, R.J. (1990) ‘Abiotic formation of formaldehyde, acetaldehyde, and glyoxalate from UV-B induced photodegradation of humic substances in natural waters’, Woods Hole Oceanographie Report No. WHOI-90-09, pp. 169–175.

    Google Scholar 

  • Petasne, R.G. and Zika, R.G. (1987) ‘Fate of superoxide in coastal sea water’, Nature, 325, 516–518.

    Article  CAS  Google Scholar 

  • Power, J.F.; Sharma, D.K.; Langford, C.H.; Bonneau, R. and Joussot-Dubien, J. (1987) ‘Laser flash photolytic studies of a well-characterized soil humic substance’, in R.G. Zika and W.J. Cooper (eds.), Photochemistry of Environmental Aquatic Systems, ACS Symnposium Series 327, Washington, D.C., pp. 157–173.

    Chapter  Google Scholar 

  • Power, J.F.; LeSage, R.; Sharma, D.K. and Langford, C.H. (1986) ‘Fluorescence lifetimes of the well-characterized humic substance, Armadale fulvic acid’, Environ. Tech. Letters, 7, 425–430.

    Article  CAS  Google Scholar 

  • Rowland, F.S. and Molina, M.J. (1975) ‘Chlorofluoromethanes in the environment’, Rev. Geophys. Space Phys., 13, 1–36.

    Article  CAS  Google Scholar 

  • Sulzberger, B.; Suter, D.; Siffert, C.; Banwart, S.; and Stumm, W. (1989), Mar. Chem. 28, 127–144.

    Article  CAS  Google Scholar 

  • Sunda, W.G.; Huntsman, S.A. and Harvey, G.R. (1983) ‘Photoreduction of manganese oxides and the supply of manganese to marine plants’, Nature, 301, 234–236.

    Article  CAS  Google Scholar 

  • Thurman, E.M. (1985) ‘Organic Geochemistry of Natural Waters’, Boston: Martinus Nijhoff/DR W. Junk Publishers.

    Book  Google Scholar 

  • Tipping, E. (1986) ‘Some aspects of the interactions between particulate oxides and aquatic humic substances’, Mar. Chem. 18, 161–169.

    Article  CAS  Google Scholar 

  • Valentine, R. and Zepp, R.G. (1990) ‘Photoproduction of carbon monoxide in wetland waters’, in preparation.

    Google Scholar 

  • Waite, T.D.; Sawyer, D.T. and Zafiriou, O.C. (1988a) ‘Panel 1: Oceanic reactive chemical transients’, Appl. Geochem., 3, 9–17.

    Article  CAS  Google Scholar 

  • Waite, T.D.; Wrigley, I.C. and Szymczak, R. (1988b) ‘Photo-assisted dissolution of a colloidal manganese oxide in the presence of fulvic acid’, Environ. Sci. Technol., 22, 778.

    Article  CAS  Google Scholar 

  • Waite, T.D. (1986) ‘Photoredox chemistry of colloidal metal oxides’, in J.A. Davis and K.F. Hayes (eds.), Geochemical Processes at Mineral Surfaces, ACS Symposium Series 323, American Chemical Society, Washington, D.C., pp. 426–445.

    Chapter  Google Scholar 

  • Waite, T.D. and Morel, F.M.M. (1984) ‘Photoreductive dissolution of colloidal iron oxides in natural waters’, Envir. Sci. Technol., 18, 860.

    Article  CAS  Google Scholar 

  • Warneck, P. and Wurzinger, C. (1988) ‘Product quantum yield for the 305-nm photodecomposition of NO3 in aqueous solution’, J. Phys. Chem., 92, 6278–6283.

    Article  CAS  Google Scholar 

  • Wever, R. (1988) ‘Ozone destruction by algae in the Arctic atmosphere’, Nature, 335, 501.

    Article  Google Scholar 

  • Yokley, R.; Garrison, A.; Wehry, E. and Mamantov, G. (1986) ‘Photochemical transformation of pyrene and benzo(a)pyrene vapor-deposited on eight coal stack ashes’, Environ. Sci. Technol., 20, 86.

    Article  CAS  Google Scholar 

  • Zafiriou, O.C. and Bonneau, R. (1987) ‘Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water’, Photochem. Photobiol., 45, 723–727.

    Article  CAS  Google Scholar 

  • Zafiriou, O.C.; Joussot-Dubien, J.; Zepp, R.G. and Zika, R.G. (1984) ‘Photochemistry of natural waters’, Environ. Sci. Technol., 18, 358A–371A.

    CAS  Google Scholar 

  • Zepp, R.G. (1982) ‘Experimental approaches to environmental photochemistry’, in O. Hutzinger (ed.), The Handbook of Environmental Chemistry, Volume 2/Part B, Springer-Verlag, Berlin, pp. 19–41.

    Google Scholar 

  • Zepp, R.G. and Andreae, M.O. (1989) ‘Factors affecting the photochemical formation of carbonyl sulfide in sea water’, Trans. Am. Geophys. Un. 70, 1023.

    Google Scholar 

  • Zepp, R.G. (1988) ‘Environmental photoprocesses involving natural organic matter’, in F.H. Frimmel and R.F. Christman (eds.), Humic Substances and Their Role in the Environment, Wiley & Sons Ltd., London, pp. 193–213.

    Google Scholar 

  • Zepp, R.G.; Braun, A.M.; Hoigné, J. and Leenheer, J. (1987a) ‘Photoproduction of hydrated electrons from natural organic solutes in aquatic environments’, Environ. Sci. Technol., 21, 485–490.

    Article  CAS  Google Scholar 

  • Zepp, R. G., and Cline, D. M., 1977. Rates of direct photolysis in aquatic environment. Environ. Sci. Technol., 11, 359–366.

    Article  CAS  Google Scholar 

  • Zepp, R.G.; Faust, B.C. and Hoigné, J., 1990. ‘The Photo-Fenton reaction in aqueous solution (pH 4–8) ’, in preparation.

    Google Scholar 

  • Zepp, R.G.; Hoigné, J. and Bader, H. (1987b) ‘Nitrate-induced photooxidation of trace organic chemicals in water’, Environ. Sci. Technol., 21, 443–450.

    Article  CAS  Google Scholar 

  • Zepp, R.G.; Schlotzhauer, P.F. and Sink, R.M. (1985) ‘Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances’, Environ. Sci. Technol., 19, 48–55.

    Article  CAS  Google Scholar 

  • Zepp, R.G. and Schlotzhauer, P.F. (1981) ‘Comparison of photochemical behavior of various humic substances in water: III. Spectroscopic properties of humic substances’, Chemosphere, 10, 479–486.

    Article  Google Scholar 

  • Zepp, R.G. and Wolfe, N.L. (1987) ‘Abiotic transformation of organic chemicals at the particle-water interface’, in W. Stumm, Ed., Aquatic Surface Chemistry, Wiley, New York, pp. 423–451.

    Google Scholar 

  • Zepp, R.G.; Wolfe, N.L.; Baughman, G.L. and Hollis, R.C. (1977) ‘Singlet oxygen in natural waters’, Nature, 267, 421–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zepp, R.G. (1991). Photochemical Conversion of Solar Energy in the Environment. In: Pelizzetti, E., Schiavello, M. (eds) Photochemical Conversion and Storage of Solar Energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3396-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3396-8_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5502-4

  • Online ISBN: 978-94-011-3396-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics