Skip to main content

The Role of Theory in Molecular Electronics

  • Chapter
Molecular Electronics

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 7))

Abstract

Molecular electronics uses molecular materials in which the molecules retain their separate identity. As a result, the properties of such materials depend on the molecular properties, the molecular arrangement, and the molecular interactions. Theory seeks to guide, inform and systematize the design and synthesis of effective molecular materials. It treats molecular properties mainly by molecular orbital methods, molecular arrangements by packing and molecular dynamics techniques, and molecular interactions by electromagnetic or quantum mechanical approaches. When these are combined, the material properties can be treated more successfully when the interactions are not essential for their existence. Current challenges to theory include understanding self-assembly and developing computer-aided design of molecules for electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Cook, Structures and Approximations for Electrons in Molecules (Ellis Horwood, Chichester, 1978).

    Google Scholar 

  2. J.O. Morley and D. Pugh, ‘Semi-empirical calculations of molecular hyperpolarizabilities’, in Organic Materials for Non-Linear Optics, eds R.A. Hann and D. Bloor, Royal Society of Chemistry Special Publication No. 69 (1989), p. 28.

    Google Scholar 

  3. A.F. Garito, J.R. Heflin, K.Y. Wong and O. Zamani-Khamiri, ‘Enhancement of nonlinear optical properties of conjugated linear chains through lowered symmetry’, as ref. [2], p.16.

    Google Scholar 

  4. D.M. Bishop, ‘General dispersion formulas for molecular third-order nonlinear optical properties’, J. Chem. Phys. 90 (1989) 3192.

    Article  ADS  Google Scholar 

  5. A. Aviram and M.A. Ratner, ‘Molecular rectifiers’, Chem. Phys. Letters 29 (1974) 277.

    Article  ADS  Google Scholar 

  6. A.J. Pertsin and A.I. Kitaigorodsky, The Atom-Atom Potential Method (Springer, Berlin, 1986).

    Google Scholar 

  7. S.L. Price and A.J. Stone, ‘The electrostatic interactions in van der Waals complexes involving aromatic molecules’, J. Chem. Phys. 86 (1987) 2859.

    Article  ADS  Google Scholar 

  8. S.R. Hall, P.V. Kolinsky, R. Jones, S. Allen, P. Gordon, B. Bothwell, D. Bloor, P.A. Norman, M.B. Hursthouse, A. Karaulov, A. Jain, J. Baldwin, M. Goodyear and D. Bishop, ‘Polymorphism and nonlinear optical activity in organic crystals’, J. Cryst-Growth 79 (1986) 745.

    Article  ADS  Google Scholar 

  9. A. Gavezzotti, ‘Molecular shape and crystal packing modes for organic molecules: a computational approach’, as ref. [2], p.82.

    Google Scholar 

  10. G.R. Luckhurst, ‘Nematic liquid crystals formed from flexible molecules: a molecular field theory’, in Recent Advances in Liquid Crystal Polymers, ed. L.L. Chapoy (Elsevier, Amsterdam, 1984), p.105.

    Google Scholar 

  11. R.W. Munn, ‘Electric dipole interactions in molecular crystals’, Molec. Phys. 64 (1988) 1.

    Article  ADS  Google Scholar 

  12. R.F.W. Bader, T.T. Nguyen-Dang and Y. Tal, ‘A topological theory of molecular structure’, Rep. Prog. Phys. 44 (1981) 893.

    Article  MathSciNet  ADS  Google Scholar 

  13. P.W. Fowler and N.C. Pyper, ‘In-crystal ionic polarizabilities derived by combining experimental and ab initio results’, Proc. Roy. Soc. Lond. A398 (1985) 377.

    ADS  Google Scholar 

  14. G.G. Roberts, N. Apsley and R.W. Munn, ‘Temperature dependent electronic conduction in semiconductors’, Phys. Reports 60 (1980) 59.

    Article  ADS  Google Scholar 

  15. J.R. Barker, ‘Molecular electronic systems: models and fabrication’, in Molecular Electronics — Science and Technology, eds A. Aviram and A. Bross (Engineering Foundation New York, 1989)

    Google Scholar 

  16. W.G. Richards, ed., Computer-Aided Molecular Design (IBC Technical Services Ltd, London, 1989).

    Google Scholar 

  17. J.M. Andre, J.O. Morley and J. Zyss, ‘From quantum chemistry to organic optical signal processing: a computer-aided molecular engineering approach’, in Molecules in Physics, Chemistry and Biology, ed. J. Maruani (Reidel, Dordrecht, 1987), p. 615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Munn, R.W. (1991). The Role of Theory in Molecular Electronics. In: Lazarev, P.I. (eds) Molecular Electronics. Topics in Molecular Organization and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3392-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3392-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5500-0

  • Online ISBN: 978-94-011-3392-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics