Skip to main content

Statistical and Evolutionary Aspects of Cometary Orbits

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

The observed frequency of passages of Earth-crossing long-period (LP) comets (P > 200 yr) is about three per year for comets brighter than absolute magnitude H10 ~ 10.5. About one out of six LP comets is estimated to be new, i.e., making its first passage through the inner planetary region. The sample of observed LP comets shows an excess of retrograde orbits that may be accounted for by the shorter dynamical lifetimes of comets on direct orbits due to planetary perturbations. The original semimajor axes of new comets concentrate in the range 7 × 103a orig ≳ 4 × 104 AU, which tells us about the region of the Oort cloud where forces other than planetary perturbations act with the greatest efficiency. Yet the distribution of original semimajor axes cannot tell us anything about the existence of a dense inner core of the Oort cloud. Besides planetary perturbations, passing stars, molecular clouds and the galactic tidal force also influence the dynamical evolution of Oort cloud comets. The observed distribution of the aphelion points of near-parabolic comets shows such a dependence on the galactic latitude. Molecular clouds and stars penetrating very deeply in the Oort cloud are found to give rise to major enhancements in the influx rate of new comets, known as comet showers, at average intervals of a few 107 yr.

An important issue to solve concerns how the frequency of comet passages varies with time, in particular as regards to the current level of comet appearances. Should we be passing through a highly intense phase, most aphelia of the incoming Oort comets would concentrate on the sky area where the strong perturber exerted its greatest effect. By contrast, the observed galactic latitude dependence of the aphelia suggests a dominant influence of the vertical galactic tidal force as compared with random strong perturbers. This seems to indicate that the frequency of comet passages is currently at, or near, its quiescent level. Whether intense comet showers are reflected in the impact cratering record is still a debatable issue. A periodicity of ~ 26–30 Myr in the impact cratering rate is quite uncertain, owing to the small size of the sample of well-dated craters and the noise from background impact craters from asteroids.

The family of short-period (SP) comets (orbital periods P < 20 yr) has long been regarded as the dynamical end-state of new comets on low-inclination orbits captured by Jupiter. However, if SP comets came from a spherical population of comets (e.g., incoming new comets), we should expect to find a percentage of them on retrograde orbits, which contradicts the observations. An alternative hypothesis for the origin of most SP comets is that they come from a trans-Neptunian comet belt. Extensive searches aimed at detecting faint slow-moving objects are required to assess the size of the comet population in the outer planetary region. Modeling of the transfer rate of comets from an outer belt to SP orbits gives transient populations between Saturn and Neptune on the order of 106 — 107 bodies. This is roughly comparable to the upper limit set by the most recent searches of outer solar system bodies.

The impact crater production rate of comets, at the present time, can be estimated to be on the order of 10% of the value corresponding to asteroidal impacts. These estimates, however, are subject to large uncertainties in the brightness-mass relation of comets and crater scaling law. The Earth could have received about 2 × 1020 g of cometary material over the last 4 billion years — if the injection rate of new comets remained constant in the time interval. Within the context of H2O inventory, the cometary influx should have rather minor effects. On the other hand, because of the paucity of H2O content in the atmospheres of Venus and Mars, cometary impact could strongly modulate their water contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C.W. (1963) Astrophysical Quantities (second edition), Athlone Press, London, p.155.

    Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Miches, H.V. (1980) “Extraterrestrial cause for the Cretaceous-Tertiary extinction,” Science 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Alvarez, W., and Muller, R.A. (1984) “Evidence from crater ages for periodic impacts on the Earth,” Nature 308, 718–720.

    Article  ADS  Google Scholar 

  • Antonov, V.A., and Latyshev, I.N. (1972) “Determination of the form of the Oort cometary cloud as the Hill surface in the galactic field,” in G.A. Chebotarev, E.I. Kazimirchak-Polonskaya and B.G. Marsden (eds.), The Motion, Evolution of Orbits, and Origin of Comets, IAU Symp. No. 45, Reidel, Dordrecht, Springer-Verlag, New York, pp. 341–345.

    Chapter  Google Scholar 

  • Bahcall, J.N. (1984) “Self-consistent determination of the total amount of matter near the Sun,” Astrophys. J. 276, 169–181.

    Article  ADS  Google Scholar 

  • Bahcall, J.N., and Soneira, R.M. (1981) “The distribution of stars to V = 16th magnitude near the north galactic pole: Normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135.

    Article  ADS  Google Scholar 

  • Bailey, M.E. (1983) “The structure and evolution of the Solar System comet cloud,” Mon. Not. Roy. Astron. Soc. 204, 603–633.

    ADS  MATH  Google Scholar 

  • Bailey, M.E. (1986) “The near-parabolic flux and the origin of short period comets,” Nature 324, 350–352.

    Article  ADS  Google Scholar 

  • Bailey, M.E., and Stagg, C.R. (1988) “Cratering constraints on the inner Oort cloud; steady-state models,” Mon. Not. Roy. Astron. Soc. 235, 1–32.

    ADS  Google Scholar 

  • Biermann, L. (1978) “Dense interstellar clouds and comets,” in A. Reiz and T. Anderson (eds.), Astronomical Papers Dedicated to Bengt Stromgren, Copenhagen Observatory, p. 327.

    Google Scholar 

  • Biermann, L., Huebner, W.F., and Lüst, R. (1983) “Aphelion clustering of ‘new’ comets: Star tracks through Oort’s cloud,” Proc. Natl. Acad. Sci. USA 80, 5151–5155.

    Article  ADS  Google Scholar 

  • Bilo, E.H., and van de Hulst, H.C. (1960) “Methods for computing the original orbits of comets,” BuU. Astron. Inst. Neth. 15, 119–127.

    ADS  Google Scholar 

  • Bogart, R.S., and Noerdlinger, P.D. (1982) “On the distribution of orbits among long-period comets,” Astron. J. 87, 911–917.

    Article  ADS  Google Scholar 

  • Byl, J. (1983) “Galactic perturbations on near-parabolic cometary orbits,” Moon and Planets 29, 121–137.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. (1962) “The formation of the Sun and the planets,” Icarus 1, 13–69.

    Article  ADS  Google Scholar 

  • Carusi, A., Kresák, L., Perozzi, E., and Valsecchi, G.B. (1984) Long-Term Evolution of Short-Period Comets, Instituto Astrofísical Spaziale Internal Report 12 Rome.

    Google Scholar 

  • Chebotarev, G.A. (1966) “Cometary motion in the outer solar system,” Soviet Astron. AJ 10, 341–344.

    ADS  Google Scholar 

  • Chyba, C.F. (1987) “The cometary contribution to the oceans of primitive Earth,” Nature 330, 632–635.

    Article  ADS  Google Scholar 

  • Cowan, J.J., and A’Hearn, M.F. (1979) “Vaporization of comet nuclei: Light curves and life times,” Moon and Planets 21, 155–171.

    Article  ADS  Google Scholar 

  • Davis, M., Hut, P., and Muller, R.A. (1984) “Extinction of species by periodic comet showers,” Nature 308, 715–717.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1973) “Origin of the short-period comets,” Astron Astrophys. 29, 377–381.

    ADS  Google Scholar 

  • Delsemme, A.H. (1986) “Cometary evidence for a solar companion?,” in R. Smoluchowski, J.N. Bahcall, and M.S. Matthews (eds.), The Galaxy and the Solar System, Univ. of Arizona Press, Tucson, pp. 173–203.

    Google Scholar 

  • Delemme, A.H. (1989) “Whence come comets?,” Sky & Telesc. March, 260–264.

    Google Scholar 

  • Delemme, A.H., and Patmiou, M. (1986) “Galactic tides affect the Oort cloud: An observational confirmation,” in Proc. 20th ESLAB Symp. on the Exploration of Halley’s Comet, Heidelberg, ESA SP-250, pp. 409–412.

    Google Scholar 

  • Donahue, T.M., Hoffman, J.H., Hodges, R.R., Jr., and Watson, A.J. (1982) “Venus was wet: A measurement of the ratio of deuterium to hydrogen,” Science 216, 630–633.

    Article  ADS  Google Scholar 

  • Donnison, J.R., and Sugden, R.A. (1984) “The distribution of asteroids diameters,” Mon. Not. Roy. Astron. Soc. 210, 673–682.

    ADS  Google Scholar 

  • Drapatz, S., and Zinnecker, H. (1984) “The size and mass distribution of Galactic molecular clouds,” Mon. Not. Roy. Astron. Soc. 210, 11p–14p.

    ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1987) “The formation and extent of the solar system comet cloud,” Astron. J. 94, 1330–1338.

    Article  ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1988) “The origin of short-period comets,” Astrophys. J. Letts. 328, L69–L73.

    Article  ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1989) “The long-term evolution of orbits in the Solar System: A mapping approach,” CITA preprint.

    Google Scholar 

  • Everhart, E. (1967) “Intrinsic distributions of cometary perihelia and magnitudes,” Astron. J. 72, 1002–1011.

    Article  ADS  Google Scholar 

  • Everhart, E. (1968) “Change in total energy of comets passing through the Solar System,” Astron. J. 73, 1039–1052.

    Article  ADS  Google Scholar 

  • Everhart, E. (1972) “The origin of short-period comets,” Astrophys. Lett. 10, 131–135.

    ADS  Google Scholar 

  • Everhart, E. (1976) “The evolution of comet orbits,” in B. Donn, M. Munna, W. Jackson, M. A’Hearn, and R. Harrington (eds.), The Study of Comets, IAU Coll. No. 25, NASA SP-393, pp. 445–464.

    Google Scholar 

  • Everhart, E., and Marsden, B.G. (1983) “New original and future cometary orbits. III,” Astron, J. 93, 753–754.

    Article  ADS  Google Scholar 

  • Fernández, J.A. (1980a) “Evolution of comet orbits under the perturbing influence of the giant planets and nearby stars,” Icarus 42, 406–421.

    Article  ADS  Google Scholar 

  • Fernández, J.A. (1980b) “On the existence of a comet belt beyond Neptune,” Mon. Not. Roy. Astron. Soc. 192, 481–491.

    ADS  Google Scholar 

  • Fernández, J.A. (1981a) “New and evolved comets in the solar system,” Astron. Astrophys. 96, 26–35.

    ADS  Google Scholar 

  • Fernández, J.A. (1981b) “On the observed excess of retrograde orbits among long-period comets,” Mon. Not. Roy. Astron. Soc. 197, 265–273.

    ADS  Google Scholar 

  • Fernández, J.A. (1982) “Dynamical aspects of the origin of comets,” Astron. J. 87, 1318–1332.

    Article  ADS  Google Scholar 

  • Fernández, J.A. (1985) “The formation and dynamical survival of the comet cloud,” A. Carusi and G.B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution, Reidel, Dordrecht, pp. 45–70.

    Chapter  Google Scholar 

  • Fernández, J.A. (1990) “Collisions of comets with meteoroids,” in C.-I. Lagerkvist, H. Rickman, B.A. Lindblad, and M. Lindgren (eds.), Asteroids, Comets, Meteors III, University of Uppsala, pp. 309–312.

    Google Scholar 

  • Fernández, J.A., and Ip, W.-H. (1981) “Dynamical evolution of a cometary swarm in the outer planetary region,” Icarus 47, 470–479.

    Article  ADS  Google Scholar 

  • Fernández, J.A., and Ip, W.-H. (1983a) “On the time evolution of the cometary influx in the region of the terrestrial planets,” Icarus 54, 377–387.

    Article  ADS  Google Scholar 

  • Fernández, J.A., and Ip, W.-H. (1983b) “Dynamical origin of the short-period comets,” in C.-I. Lagerkvist and H. Rickman (eds.), Asteroids, Comets, Meteors, University of Uppsala, pp. 387–390.

    Google Scholar 

  • Fernández, J.A., and Ip, W.-H. (1987) “Time-dependent injection of Oort cloud comets into Earth-crossing orbits,” Icarus 71, 46–56.

    Article  ADS  Google Scholar 

  • Fernández, J.A., and Jockers, K. (1983) “Nature and origin of comets,” Rep. Prog. Phys. 46, 665–772.

    Article  ADS  Google Scholar 

  • Fesenkov, V.G. (1922) “Sur les perturbations séculaires dans le mouvement des cometes non péiodiques par des étoiles voisines,” Publ. Russian Astrophys. Obervatory 1, 186–195.

    Google Scholar 

  • Festou, M., Rickman, H., and Kamél, L. (1990) “The origin of nongravitational forces in comets,” in C.-I. Lagerkvist, H. Rickman, B.A. Lindblad, and M. Lindgren (eds.), Asteroids, Comets, Meteors III, University of Uppsala, pp. 313–316.

    Google Scholar 

  • Foog, M.J. (1989) “The relevance of the background impact flux to cyclic impact/mass extinction hypotheses,” Icarus 79, 382–395.

    Article  ADS  Google Scholar 

  • Hamid, S.E., Marsken, B.G., and Whipple, F.L. (1968) “Influence of a comet belt beyond Neptune on the motions of periodic comets,” Astron. J. 73, 727–729.

    Article  ADS  Google Scholar 

  • Hasegawa, I. (1976) “Distribution of the aphelia of long-period comets,” Publ. Astron. Soc. Japan 28, 259–276.

    ADS  Google Scholar 

  • Helin, E.F., and Shoemaker, E.M. (1979), “The Palomar planet-crossing asteroid survey 1973–1978,” Icarus 40, 321.

    Article  ADS  Google Scholar 

  • Heisler, J. and Tremaine, S. (1986) “The influence of the galactic tidal field on the Oort comet cloud,” Icarus 65, 13–26.

    Article  ADS  Google Scholar 

  • Heisler, J. and Tremaine, S. (1989) “How dating uncertainties affect the detection of periodicity in extinctions and craters,” Icarus 77, 213–219.

    Article  ADS  Google Scholar 

  • Hills, J.G. (1981) “Comet showers and the steady-state infall of comets from the Oort cloud,” Astron. J. 86, 1730–1740.

    Article  ADS  Google Scholar 

  • Holsapple, K.A., and Schmidt, R.M. (1982) “On the scaling of crater dimensions 2, Impact processes,” J.Geophys. Res. 87, 1849–1870.

    Article  ADS  Google Scholar 

  • Hughes, D.W. (1982) “Astroidal size distribution,” Mon. Not. Roy. Astron. Soc. 199, 1149–1157.

    ADS  Google Scholar 

  • Hughes, D.W. (1987) “Cometary magnitude distribution and the fading of comets,” Nature 325, 231–232.

    Article  ADS  Google Scholar 

  • Hurnik, H. (1959) “The distribution of the directions of perihelia and the orbital poles of non-periodic comets,” Acta Astron. 9, 207–221.

    ADS  Google Scholar 

  • Hut, P., Alvarez, W., Hansen, T., Kauffman, E.G., Keller, G., Shoemaker, E.M. and Weissman, P.R. (1987) “Comet showers as a cause of mass extinctions,” Nature 329, 118–126.

    Article  ADS  Google Scholar 

  • Hut, P., and Tremaine, S. (1985) “Have interstellar clouds disrupted the Oort comet cloud?,” Astron. J. 90, 1548–1557.

    Article  ADS  Google Scholar 

  • Ip, W.-H., and Fernández, J.A. (1988) “Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion,” Icarus 74, 47–61.

    Article  ADS  Google Scholar 

  • Ip, W.-H., and Fernández, J.A. (1990) “Steady-state injection of short-period comets from the trans-Neptunian cometary belt,” submitted to Icarus.

    Google Scholar 

  • Ishida, K., Mikami, T., and Kosai, H. (1984) “Size distribution of asteroids,” Publ. Astron. Soc. Japan 36, 357–370.

    ADS  Google Scholar 

  • Jackson, A.A., and Killen, R.M. (1988) “Infrared brightness of a comet belt beyond Neptune,” Earth, Moon, Planets 42, 41–47.

    Article  ADS  Google Scholar 

  • Joss, P.C. (1973) “On the origin of short-period comets,” Astron. Astrophys. 25, 271–273.

    ADS  Google Scholar 

  • Kazimirchak-Polonskaya, E.I. (1976) “Review of investigations performed in the U.S.S.R. on close approaches of comets to Jupiter and the evolution of cometary orbits,” in B. Donn, M. Mumma, W. Jackson, M. A’Hearn, and R. Harrington (eds.), The Study of Comets, NASA SP-393, pp. 490–536.

    Google Scholar 

  • Kowal, C.T. (1989) “A solar system survey,” Icarus 77, 118–123.

    Article  ADS  Google Scholar 

  • Kresák, L. (1975) “The bias of the distribution of cometary orbits by observational selection,” Bull. Astron. Inst. Czech. 26, 92–111.

    ADS  Google Scholar 

  • Kresák, L. (1978) “The comet and asteroid population of the Earth’s environment,” Bull. Astron. Inst. Czech 29, 114–125.

    ADS  Google Scholar 

  • Kresák, L., and Pittich, E.M. (1978) “The intrinsic number density of active long-period comets in the inner solar system,” Bull. Astron. Inst. Czech 29, 299–309.

    ADS  Google Scholar 

  • Kuiper, G.P. (1951) “On the origin of the solar system,” in J.A. Hynek (ed.), Astrophysics, McGraw-Hill, New York, pp. 357–427.

    Google Scholar 

  • Kumar, S., Hunten, D.M., and Pollack, J.B. (1983) “Nonthermal escape of hydrogen and deuterium from Venus and implication for loss of water,” Icarus 55, 369.

    Article  ADS  Google Scholar 

  • L”ust, R. (1984) “The distribution of the aphelion directions of long-period comets,” Astron. Astrophys. 141, 94–100.

    ADS  Google Scholar 

  • Luu, J.X., and Jewitt, D. (1988) “A two-part search for slow-moving objects,” Astron. J. 95, 1256–1262.

    Article  ADS  Google Scholar 

  • Marsden, B.G. (1986) Catalogue of Cometary Orbits, (fifth edition), IAU Central Bureau for Astron. Telegrams, Cambridge, Mass.

    Google Scholar 

  • Marsden, B.G. (1990) “The sungrazing comet group. II,” Astron. J. (in press).

    Google Scholar 

  • Marsden, B.G., Sekanina, Z., and Everhart, E. (1978) “New osculating orbits for 110 comets and analysis of original orbits,” Astron. J. 83, 64–71.

    Article  ADS  Google Scholar 

  • Marsden, B.G., Sekanina, Z., and Yeomans, D.K. (1973) “Comets and nongravitational forces. V.,” Astron. J. 78, 211–225.

    Article  ADS  Google Scholar 

  • McKinnon, W.B., and Mueller, S. (1988) “Pluto’s structure and composition suggest origin in the solar, not a planetary, nebula,” Nature 335, 240–243.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1981) “Atmospheric breakup of terrestrial impactors,” in P.H. Schultz, and R.B. Merrill (eds.), Multipling Basins, Proc. Lundar Planet Sci. 12A, pp 29–35.

    Google Scholar 

  • Mendis, D.A. (1973) “The comet-meteor stream complex,” Astrophys. Space Sci. 20, 165–176.

    Article  ADS  Google Scholar 

  • Morris, D.E., and Muller, R.A. (1986) “Tidal gravitational forces: The infall of ‘new’ comets and comet showers,” Icarus 65, 1–12.

    Article  ADS  Google Scholar 

  • Napier, W.M., and Clube, S.V.M. (1979) “A theory of terrestrial catastrophism,” Nature 282, 455–459.

    Article  ADS  Google Scholar 

  • Napier, W.M., and Staniucha, M. (1982) “Interstellar planetesimals — I, Dissipation of a primordial cloud of comets by tidal encounters with massive nebulae,” Mon. Not. Roy., astron. Soc. 198, 723–735.

    ADS  Google Scholar 

  • Neukum, G. (1975) “Mars: A standard crater curve and possible new time scale,” Science 194, 1381–1387.

    Article  ADS  Google Scholar 

  • Oja, H. (1975) “Perihelion distribution of near-parabolic comets,” Astron. Astrophys. 43, 317–319.

    ADS  Google Scholar 

  • Oort, J.H. (1950) “The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin,” Bull. Astron. Inst. Neth. 11, 91–110.

    ADS  Google Scholar 

  • Öpik, E.J. (1932) “Note on stellar perturbations on nearly parabolic orbits,” Proc. Am. Acad. Arts. Sci. 67, 1659–183.

    Article  Google Scholar 

  • Öpik, E.J. (1966) “Sun-grazing comets and tidal disruption,” Irish Astron. J. 7, 141–161.

    ADS  Google Scholar 

  • Owen, T., Maillard, J.P., de Bergh, C., and Lutz, B.L. (1988) “Deuterium on Mars: The abundance of HDO and the value of D/H,” Science 240, 1767–1769.

    Article  ADS  Google Scholar 

  • Porter, J.G. (1963) “The statistics of comet orbits,” in B.M. Middlehurst and G.B. Kuiper (eds.), The Moon, Meteorites and Comets, The University of Chicago Press, pp. 550–572.

    Google Scholar 

  • Pollack, J.B., and Yung, Y.L. (1980) “Origin and evolution of planetary atmospheres,” Ann. Rev. Earth Planet. Sci. 8, 425–487.

    Article  ADS  Google Scholar 

  • Rampino, M.R., and Stothers, R.B. (1984) “Terrestrial mass extinctions, cometary impacts and the sun’s motion perpendicular to the galactic plane,” Nature 308, 709–712.

    Article  ADS  Google Scholar 

  • Raup, D.M., and Sepkoski, J.J. (1984) “Periodicity of extinctions in the geologic past,” Proc. Natl. Acad. Sci. USA 81, 801–805.

    Article  ADS  Google Scholar 

  • Rickman, H. (1976) “Stellar perturbations of orbits of long-period comets and their significance for cometary capture,” Bull. Astr. Inst. Czech. 27, 92–105.

    ADS  Google Scholar 

  • Rickman, H. (1986) “Masses and densities of comets Halley and Kopff,” in The Comet Nucleus Sample Return Mission Proc. Workshop, Canterbury, UK, ESA SP-249, pp. 195–205.

    Google Scholar 

  • Safranov, V.S. (1972) “Ejection of bodies from the solar system in the course of the accumulation of the giant planets and the formation of the cometary cloud,” in G.A. Chebotarev, E.I. Kazimirchak-Polonskaya and B.G. Marsden (eds.), The Motion, Evolution of Orbits, and Origin of Comets, I.A.U. Symp. No. 45, Reidel, Dordrecht, Springer-Verlag, New York, pp. 329–334.

    Chapter  Google Scholar 

  • Sekanina, Z., and Yeomans, D.K. (1984) “Close encounters and collisions of comets with the Earth,” Astron. J. 89, 154–161.

    Article  ADS  Google Scholar 

  • Shoemaker, E.M., Williams, J.G., Helin, E.F., and Wolfe, R.F. (1979) “Earth-crossing asteroids: orbital classes, collision rates with Earth, and origin,” in Asteroids, T. Gehrels (ed.), Univ. of Arizona Press, Tucson, pp. 253.

    Google Scholar 

  • Shoemaker, E.M., and Wolfe, R.F. (1982) “Cratering time scales for the Galilean satellites”, in Satellites of Jupiter, D. Morrison (ed.), Univ. of Arizona Press, Tucson, pp. 277–339.

    Google Scholar 

  • Smoluchowski, R., and Torbett, M. (1984) “The boundary of the solar system,” Nature 311, 38–39.

    Article  ADS  Google Scholar 

  • Stagg, C.P., and Bailey, M.E. (1989) “Stochastic capture of short-period comets,” Mon. Not. Roy. Astron. Soc. 241, 507.

    ADS  Google Scholar 

  • Stothers, R.B. (1984) “Mass extinctions and missing matter,” Nature 311, 17.

    Article  ADS  Google Scholar 

  • Stothers, R.B. (1988) “Structure of Oort’s comet cloud inferred from terrestrial impact craters,” The Observatory 108, 1–9.

    ADS  Google Scholar 

  • Strom, R.G., and Neukum, G. (1988) “The cratering record on Mercury and the origin of impacting objects,” in Mercury, Eds. F. Vilas, C.R. Chapman and M.S. Matthews, Univ. of Arizona Press, Tucson, 336–373.

    Google Scholar 

  • Talbot, R.J., and Newman, M.J. (1977) “Encounters between stars and dense interstellar clouds,” Astrophys. J. Suppl. Ser. 34, 295–308.

    Article  ADS  Google Scholar 

  • Torbett, M.V. (1986) “Injection of Oort cloud comets to the inner solar system by galactic tidal fields,” Mon. Not. Roy. Astron. Soc. 223, 885–895.

    ADS  Google Scholar 

  • Tremaine, S. (1986) “Is there evidence for a solar companion star?,” in R. Smoluchowski, J.N. Bahcall, and M.S. Matthews (eds.), The Galaxy and the Solar System, Univ. of Arizona Press, Tucson, pp. 409–416.

    Google Scholar 

  • Tyror, J.G. (1957) “The distribution of the directions of perihelia of long-period comets,” Mon. Not. Roy. Astron. Soc. 117, 369–379.

    ADS  Google Scholar 

  • Van Woerkom, A.J.J. (1948) “On the origin of comets,” Bull. Astr. Inst. Neth. 10, 445–472.

    ADS  Google Scholar 

  • Wetherill, G.W. (1975) “Late heavy bombardment of the moon and terrestrial swarm subsequent to the formation of the Earth and the Moon,” In Proc. 8th Lunar Sci. Conf., pp. 1–16.

    Google Scholar 

  • Wetherill, G.W., and Shoemaker, E.M. (1982) “Collision of astronomically observable bodies with the Earth,” in Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Soc. Amer. Sp. Pap., 190, 1.

    Google Scholar 

  • Weissman, P.R. (1980a) “Stellar perturbations of the cometary cloud,” Nature 288, 242–243.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1980b) “Physical loss of long-period comets,” Astron. Astrophys. 85, 1919–196.

    Google Scholar 

  • Weissman, P.R. (1983) “The mass of the Oort cloud,” Astron. Astrophys. 118, 90–94.

    ADS  Google Scholar 

  • Weissman, P.R. (1985a) “Dynamical evolution of the Oort cloud,” in A. Carusi and G.B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution, Reidel, Dordrecht, pp. 87–96.

    Chapter  Google Scholar 

  • Weissman, P.R. (1985b) “Cometary dynamics,” Sp. Sci. Rev. 41, 299–349.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1985c) “Terrestrial impactors at geological boundary events: Comets or asteroids,” Nature 314, 517–518.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1990) “The Oort cloud,” Nature (in press).

    Google Scholar 

  • Whipple, F.L. (1950) “A comet model. I. The acceleration of comet Encke,” Astrophys. J. 111, 375–394.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1964) “Evidence for a comet belt bezond Neptune,” Proc. Natl. Acad. Sci. 51, 711.

    Article  ADS  Google Scholar 

  • Whitmire, D.P., and Jackson, A.A. (1984) “Are periodic mass extinctions driven by a distant solar companion?,” Nature 308, 713–715.

    Article  ADS  Google Scholar 

  • Yeomans, D.K., and Chodas, P.W. (1989) “An asymmetric outgassing model for cometary nongravitationa! accelerations,” Astron. J. 98, 1083–1093.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernández, J.A., Ip, WH. (1991). Statistical and Evolutionary Aspects of Cometary Orbits. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics