Skip to main content

Dynamical History of the Oort Cloud

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

Dynamical studies during the past decade have resulted in an almost explosive increase in our understanding of the Oort cloud of comets, which surrounds the solar system. Cometary orbits in the cloud evolve under the complex interaction of stellar, galactic, and giant molecular cloud perturbations, as well as planetary and nongravitational perturbations when the orbits re-enter the planetary region. Evidence has continued to build for a dense, inner Oort cloud of comets which acts as a reservoir to replenish the outer cloud as comets there are stripped away. A ring of comets beyond the orbit of Neptune, which may be the source of the short-period comets, is also likely. Both the estimated number and mass of comets in the Oort cloud have grown such that the total mass may be comparable to the mass of the planets. Temporal variations in the flux of comets from the Oort cloud into the planetary region by a factor of 50% are typical, and by factors of 20 to 200 are possible. The most intense cometary “showers” may have serious implications for biological extinction events on Earth as well as for the impact history of planets and satellite systems. Comets in the Oort cloud are processed by galactic cosmic rays, heated by nearby Supernovae, eroded by interstellar dust impacts, and disrupted by mutual collisions (in the inner cloud). A detailed estimate of the Oort cloud’s dynamical history is not possible because of the inability to reconstruct the Sun’s varying galactic motion over the history of the solar system, and because of uncertainty over where comets actually formed. However, it is likely that a substantial fraction of the original Oort cloud population has been lost to interstellar space. We are approaching the time when Oort clouds around other stars may be detectable, though searches to date have so far been negative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C. W. (1973) Astrophysical Quantities, Athlone Press, London, 310 pp.

    Google Scholar 

  • Anderson, J. D., and Standish, E. M. Jr. (1986) Dynamical evidence for Planet X. In The Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, and M. S. Matthews, Univ. Arizona Press, Tucson, pp. 286–296.

    Google Scholar 

  • Antonov, V. A., and Latyshev, I. N. (1972) Determination of the form of the Oort cometary cloud as the Hills surface in the Galactic field. In The Motion, Evolution of Orbits, and Origin of Comets, eds. G. A. Chebotarev, E. I. Kazimirchak-Polonskaya, and B. G. Marsden, D. Reidel, Dordrecht, pp. 341–345.

    Chapter  Google Scholar 

  • Bahcall, J. N. (1984) Self-consistent determination of the total amount of matter near the Sun. Astrophys. J. 276, 169–181.

    Article  ADS  Google Scholar 

  • Bahcall, J. N., and Bahcall, S. (1985) The Sun’s motion perpendicular to the galactic plane. Nature 316, 706–708.

    Article  ADS  Google Scholar 

  • Bailey, M. E. (1983) Comets, planet X, and the orbit of Neptune. Nature 302, 399–400.

    Article  ADS  Google Scholar 

  • Bailey, M. E. (1984) The steady-state 1/a distribution and the problem of cometary fading. Mon. Not. Roy. Astron. Soc. 211, 347–368.

    ADS  Google Scholar 

  • Bailey, M. E. (1986) The mean energy transfer rate to comets in the Oort cloud and implications for cometary origins. Mon. Not. Roy. Astron. Soc. 218, 1–30.

    ADS  Google Scholar 

  • Bailey, M. E., and Stagg, C. R. (1988) Cratering constraints on the inner Oort cloud: Steady-state models. Mon. Not. Roy. Astron. Soc. 235, 1–35.

    ADS  Google Scholar 

  • Biermann, L. (1978) Dense interstellar clouds and comets. In Astronomical Papers Dedicated to Bengt Stromgren, eds. A. Reiz and T. Anderson, Copenhagen Obs., pp. 327–335.

    Google Scholar 

  • Brin, G. D., and Mendis, D. A. (1979) Dust release and mantle development in comets. Astrophys. J. 229, 402–408.

    Article  ADS  Google Scholar 

  • Byl, J. (1983) Galactic perturbations on nearly parabolic cometary orbits. Moon & Planets 29, 121–137.

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus 1, 13–69.

    Article  ADS  Google Scholar 

  • Cameron, A. G. W. (1978) The primitive solar accretion disc and the formation of the planets. In The Origin of the Solar System, ed. S. F. Dermott, John Wiley & Sons, New York, pp. 49–75.

    Google Scholar 

  • Clube, S. V. M., and Napier, W. M. (1982) Spiral arms, comets and terrestrial catastrophism. Quart. J. Roy. Astron. Soc. 23, 45–66.

    ADS  Google Scholar 

  • Clube, S. V. M., and Napier, W. M. (1984) Comet capture from molecular clouds: A dynamical constraint on star and planet formation. Mon. Not. Roy. Astron. Soc. 208, 575–588.

    ADS  Google Scholar 

  • Davis, M., Hut, P., and Muller, R. A. (1984) Extinction of species by periodic comet showers. Nature 308, 715–717.

    Article  ADS  Google Scholar 

  • Delsemme, A. H. (1987) Galactic tides affect the Oort cloud: An observational confirmation. Astron. & Astrophys. 187, 913–918.

    ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1987) The formation and extent of the solar system comet cloud. Astron. J. 94, 1330–1338.

    Article  ADS  Google Scholar 

  • Duncan, M., Quinn, T., and Tremaine, S. (1988) The origin of short-period comets. Astrophys. J. 328, L69–L73.

    Article  ADS  Google Scholar 

  • Everhart, E. (1967) Intrinsic distributions of cometary perihelia and magnitudes. Astron. J. 72, 1002–1011.

    Article  ADS  Google Scholar 

  • Fernandez, J. A. (1980) On the existence of a comet belt beyond Neptune. Mon. Not. Roy. Astron. Soc. 192, 481–491.

    ADS  Google Scholar 

  • Fernandez, J. A. (1982) Dynamical aspects of the origin of comets. Astron J. 87, 1318–1332.

    Article  ADS  Google Scholar 

  • Fernandez, J. A. (1990) Statistical and evolutionary aspects of cometary orbits. In Comets in the Post-Halley Era, eds. R. L. Newburn Jr., J. Rahe, and M. M. Neugebauer, Kluwer, Dordrecht, in press.

    Google Scholar 

  • Fernandez, J. A., and Ip, W.-H. (1981) Dynamical evolution of a cometary swarm in the outer planetary region. Icarus 47, 470–479.

    Article  ADS  Google Scholar 

  • Fernandez, J. A., and Ip, W.-H. (1987) Time dependent injection of Oort cloud comets into Earth-crossing orbits. Icarus 71, 46–56.

    Article  ADS  Google Scholar 

  • Grieve, R. A. F. (1987) Terrestrial impact structures. Ann. Rev. Earth & Planet Sci. 17, 245–270.

    Article  ADS  Google Scholar 

  • Halley, E. (1705) A Synopsis of the Astronomy of Comets. London, 24 pp.

    Google Scholar 

  • Harrington, R. S. (1985) Implications of the observed distributions of very long-period comet orbits. Icarus 61, 60–62.

    Article  ADS  Google Scholar 

  • Heisler, J., and Tremaine, S. (1986) The influence of the galactic tidal field on the Oort comet cloud. Icarus 65, 13–26.

    Article  ADS  Google Scholar 

  • Heisler, J., Tremaine, S., and Alcock, C. (1987) The frequency and intensity of comet showers from the Oort cloud. Icarus 70, 269–288.

    Article  ADS  Google Scholar 

  • Heisler, J. (1990) Monte Carlo simulations of the Oort comet cloud. Icarus, submitted.

    Google Scholar 

  • Hills, J. G. (1981) Comet showers and the steady-state infall of comets from the Oort cloud. Astron. J. 86, 1730–1740.

    Article  ADS  Google Scholar 

  • Hills, J. G. (1984) Dynamical constraints on the mass and perihelion distance of Nemesis and the stability of its orbit. Nature 311, 636–638.

    Article  ADS  Google Scholar 

  • Hoffman, A. (1985) Patterns of family extinction depend on definition and geologic timescale. Nature 315, 659–662.

    Article  ADS  Google Scholar 

  • Hut, P., and Weissman, P. R. (1985) Dynamical evolution of cometary showers. Bull. Amer. Astron. Soc. 17, 690 (abstract).

    ADS  Google Scholar 

  • Hut, P., and Tremaine, S. (1985) Have interstellar clouds disrupted the Oort comet cloud? Astron. J. 90, 1548–1557.

    Article  ADS  Google Scholar 

  • Hut, P., Alvarez, W., Elder, W. P., Hanson, T., Kauffmann, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. (1987) Comet showers as a cause of stepwise extinctions. Nature 329, 118–126.

    Article  ADS  Google Scholar 

  • Innanen, K. A., Patrick, A. T., and Duley, W. W. (1978) The interaction of the spiral density wave and the Sun’s galactic orbit. Astrophys. Space Sci. 57, 511–515.

    Article  ADS  Google Scholar 

  • Kyte, F. T. (1988) The extraterrestrial component in marine sediments: Description and interpretation. Paleoceanography 3, 235–247.

    Article  ADS  Google Scholar 

  • Johnson, R. E., Cooper, J. F., Lanzerotti, L. J., and Strazzula, G. (1987) Radiation formation of a non-volatile comet crust. Astron. Astrophys. 187, 889–892.

    ADS  Google Scholar 

  • Kuiper, G. P., 1951. On the origin of the solar system. In Astrophysics, ed. J. A. Hynek, McGraw Hill, New York, pp. 357–424.

    Google Scholar 

  • Marochnik, L. S., Mukhin, L. M, and Sagdeev, R. Z. (1988) Estimates of mass and angular momentum in the Oort cloud. Science 242, 547–550.

    Article  ADS  Google Scholar 

  • Marsden, B. G., Sekanina, Z., and Yeomans, D. K. (1973) Comets and nongravitational forces. V. Astron. J. 78, 211–225.

    Article  ADS  Google Scholar 

  • Marsden, B. G., Sekanina, Z., and Everhart, E. (1978) New osculating orbits for 110 comets and the analysis of the original orbits of 200 comets. Astron J. 83, 64–71.

    Article  ADS  Google Scholar 

  • McGlynn, T. A. and Chapman, R. D. (1989) On the nondetection of extrasolar comets. Astrophys. J. 346, L105–108.

    Article  ADS  Google Scholar 

  • Mihalas, D., and Binney, J. (1981) Galactic Astronomy, Structure and Kinematics, W. H. Freeman, San Francisco, 597 pp.

    Google Scholar 

  • Morris, D. E., and Muller, R. A. (1986) Tidal gravitational forces: The infall of “new” comets and comet showers. Icarus 65, 1–12.

    Article  ADS  Google Scholar 

  • Nezhinskij, E. M. (1972) On the stability of the Oort cloud. In The Motion, Evolution of Orbits, and Origin of Comets, eds. G. A. Chebotarev, E. I. Kazimirchak-Polonskaya, and B. G. Marsden, D. Reidel, Dordrecht, pp. 335–340.

    Chapter  Google Scholar 

  • Oort, J. H. (1950) The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91–110.

    ADS  Google Scholar 

  • Oort, J. H., and Schmidt, M. (1951) Differences between new and old comets. Bull. Astron. Inst. Neth. 11, 259–269.

    ADS  Google Scholar 

  • Öpik, E. (1932) Note on stellar perturbations of nearly parabolic orbits. Proc. Amer. Acad. Arts. & Sci. 67, 169–183.

    Article  Google Scholar 

  • Peale, S. J. (1989) On the density of Halley’s comet. Icarus 82, 36–49.

    Article  ADS  Google Scholar 

  • Prialnik, D., and Bar-Nun, A. (1987) On the evolution and activity of cometary nuclei. Astrophys. J. 313, 893–905.

    Article  ADS  Google Scholar 

  • Rampino, M. R., and Stothers, R. B. (1984) Terrestrial mass extinctions, cometary impacts, and the sun’s motion perpendicular to the galactic plane. Nature 308, 709–712.

    Article  ADS  Google Scholar 

  • Raup, D. M., and Sepkoski, J. J. (1984) Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 81, 801–805.

    Article  ADS  Google Scholar 

  • Rickman, H. (1986) Masses and densities of comets Halley and Kopff. In Comet Nucleus Sample Return, ESA SP-249, pp. 195–205.

    Google Scholar 

  • Safronov, V. S. (1972) Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, NASA TT-F-677 (Nauka Press, Moscow, 1969).

    Google Scholar 

  • Sagdeev, R. Z., Elyasberg, P. E., and Moroz, V. I. (1987) Is the nucleus of comet Halley a low density body? Nature 331, 240–242.

    Article  ADS  Google Scholar 

  • Schwartz, R. D., and James, P. B. (1984) Periodic mass extinctions and the Sun’s oscillation about the galactic plane. Nature 308, 712–713.

    Article  ADS  Google Scholar 

  • Sekanina, Z. (1976) A probability of encounter with interstellar comets and the likelihood of their existence. Icarus 27, 123–133.

    Article  ADS  Google Scholar 

  • Shoemaker, E. M., and Wolfe, R. F. (1984) Evolution of the Uranus-Neptune planetesimal swarm. Lunar Planet Sci. Conf. XV, 780–781 (abstract).

    ADS  Google Scholar 

  • Shoemaker, E. M., and Wolfe, R. F. (1986) Mass extinctions, crater ages, and comet showers. In The Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, and M. S. Matthews, Univ. Arizona Press, Tucson, pp. 338–386.

    Google Scholar 

  • Smoluchowski, R., and Torbett, M. (1984) The boundary of the solar system. Nature 311, 38–39.

    Article  ADS  Google Scholar 

  • Stern, S. A. (1986) The effects of mechanical interaction between the interstellar medium and comets. Icarus 68, 276–283.

    Article  ADS  Google Scholar 

  • Stern, S. A. (1988) Collisions in the Oort cloud. Icarus 73, 499–507.

    Article  ADS  Google Scholar 

  • Stern, S. A. (1990) ISM induced erosion and gas dynamical drag in the Oort cloud. Icarus, in press.

    Google Scholar 

  • Stern, S. A., and Shull, J. M. (1988) The thermal evolution of comets in the Oort cloud by stars and Supernovae. Nature 332, 407–411.

    Article  ADS  Google Scholar 

  • Stern, S. A., Stocke, J., and Weissman, P. R. (1990) An IRAS search for extra-solar Oort clouds. Icarus, submitted.

    Google Scholar 

  • Stern, S. A., Shull, M. J., and Brandt, J. C. (1990b) The evolution and detectability of comet clouds during post main sequence stellar evolution. Nature, in press.

    Google Scholar 

  • Thaddeus, P., and Chanan, G. A. (1985) Cometary impacts, molecular clouds, and the motion of the Sun perpendicular to the galactic plane. Nature 314, 73–75.

    Article  ADS  Google Scholar 

  • Torbett, M. V., and Smoluchowski, R. (1984) Orbital stability of an unseen solar companion linked to periodic extinction events. Nature 311, 641–642.

    Article  ADS  Google Scholar 

  • Tremaine, S. (1986) Is there evidence for a solar companion. In The Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, and M. S. Matthews, Univ. Arizona Press, Tucson, pp. 409–416.

    Google Scholar 

  • Valtonen, M. J. (1983) On the capture of comets into the inner solar system. Observatory 103, 1–4.

    ADS  Google Scholar 

  • Valtonen, M. J. and Innanen, K. A. (1982) The capture of interstellar comets. Astrophys. J. 255, 307–315.

    Article  ADS  Google Scholar 

  • van Woerkom, A. F. F. (1948) On the origin of comets. Bull. Astron. Inst. Neth. 10, 445–472.

    ADS  Google Scholar 

  • Wallis, M. K. (1980) Radiogenic melting of primordial comet interiors. Nature 284, 431–432.

    Article  ADS  Google Scholar 

  • Weissman, P. R. (1979) Physical and dynamical evolution of long-period comets. In Dynamics of the Solar System, ed. R. L. Duncombe, D. Reidel, Dordrecht, pp. 277–282.

    Chapter  Google Scholar 

  • Weissman, P. R. (1980) Stellar perturbations of the cometary cloud. Nature 288, 242–243.

    Article  ADS  Google Scholar 

  • Weissman, P. R. (1982) Dynamical history of the Oort cloud. In Comets, ed. L. L. Wilkening, Univ. Arizona Press, Tucson, pp. 637–658.

    Google Scholar 

  • Weissman, P. R. (1985a) Dynamical evolution of the Oort cloud. In Dynamics of Comets: Their Origin and Evolution, eds. A. Carusi and G. B. Valsecchi, D. Reidel, Dordrecht, pp. 87–96.

    Chapter  Google Scholar 

  • Weissman, P. R. (1985b) Terrestrial impactors at geologic boundary events: Comets or asteroids? Nature 314, 517–518.

    Article  ADS  Google Scholar 

  • Weissman, P. R. (1986a) The mass of the Oort cloud: A post Halley reassessment. Bull. Amer. Astron. Soc. 18, 799 (abstract).

    ADS  Google Scholar 

  • Weissman, P. R. (1986b) The Oort cloud and the galaxy: Dynamical interactions. In The Galaxy and the Solar System, eds. R. Smoluchowski, J. N. Bahcall, and M. S. Matthews, Univ. Arizona Press, Tucson, pp. 204–237.

    Google Scholar 

  • Weissman, P. R. (1986c) Are cometary nuclei really pristine? In The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 15–25.

    Google Scholar 

  • Weissman, P. R. (1990) The cometary impactor flux at the Earth. In Global Catastrophes in Earth History, GSA Special Paper 247, eds. V. Sharpton and P. Ward, in press.

    Google Scholar 

  • Whipple, F. L. (1964) The history of the solar system. Proc. Natl. Acad. Sci. USA 51, 711–718.

    Article  ADS  Google Scholar 

  • Whitmire, D. P., and Jackson, A. A. (1984) Are periodic mass extinctions driven by a distant solar companion? Nature 308, 713–715.

    Article  ADS  Google Scholar 

  • Whitmire, D. P., and Matese, J. J. (1985) Periodic comet showers and planet X. Nature 313, 36–38.

    Article  ADS  Google Scholar 

  • Wielen, R. (1977) The diffusion of stellar orbits derived from the observed age dependence of the velocity dispersions. Astron. Astrophys. 60, 263–275.

    ADS  Google Scholar 

  • Yeomans, D. K. (1986) Physical interpretations from the motions of comets Halley and Giacobini-Zinner. In 20th ESLAB Symposium on the Exploration of Halley’s Comet, eds. B. Battrick, E. J. Rolfe, and R. Reinhard, ESA SP-250, 2, 419–425.

    Google Scholar 

  • Zhou, L., and Kyte, F. T. (1988) The Permian-Triassic boundary event: A geochemical study of three Chinese sections. Earth & Planet. Sci. Lett. 90, 411–421.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weissman, P.R. (1991). Dynamical History of the Oort Cloud. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics