Skip to main content

Chemical Theories on the Origin of Comets

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

Firstly, observational data available at present to infer physical conditions of the formation environment of cometary matter are briefly surveyed. These include the chemical and isotopic composition of cometary matter, and the nuclear spin temperature derived from the ortho/para abundance ratio of H2O molecules. Secondly, theories on the origin of comets—theories based upon the chemical composition of the volatile component of cometary matter—are reviewed. The theories are classified into two types, distinguished by whether cometary volatiles originate as solar nebula condensates or as the sublimation residue of interstellar ices. Observational items helpful to test the theories are pointed out. Thirdly, discussion is given on the physical properties of ices relevant to the chemical theory of the origin of comets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.-H., Schwenn, R., Rosenbauer, H., Shelley, E., Balsiger, H., and Geiss, J. (1987). ‘Evidence for methane and ammonia in the coma of comet P/Halley,’ Astron. Astrophys. 187, 502–512.

    ADS  Google Scholar 

  • Balsiger, H., Altweg, K., Bühler, F. Geiss, J., Ghielmetti, A.G., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.-H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, H., Schwenn, R., Sharp, R.D., Shelley, E.G., Ungstrup, E., and Young, D.T. (1986). ‘Ion composition and dynamics at comet Halley,’ Nature 321, 330–334.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L. (1985). ‘Trapping and release of gases by water and implications for icy bodies,’ Icarus 63, 317–332.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D. (1987). ‘Amorphous ice and its ability to trap gases,’ Phys. Rev. B35, 2427–2435.

    ADS  Google Scholar 

  • Bertie, J.E., and Devlin, J.P. (1983). ‘Infrared spectroscopic proof of the formation of the structure I hydrate of oxirane from annealed low-temperature condensate,’ J. Chem. Phys. 78, 6340–6341.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. (1978). ‘Physics of the primitive solar accretion disk,’ Moon and Planets 18, 5–40.

    Article  ADS  Google Scholar 

  • Combes, M., Moroz, V.I., Crovisier, J., Encrenaz, T., Bibring, J.-P., Grigoriev, A.V., Sanko, N.F., Coron, N., Crifo, J.F., Gispert, R., Bockelée-Morvan, D., Nikolsky, Yu.V., Krasnopolsky, V.A., Owen, T., Emerich, C., Lamarre, J.M., and Rocard, F. (1988). ‘The 2.5 — 12µm spectrum of comet Halley from the IKS-VEGA experiment,’ Icarus 76, 404–436.

    Article  ADS  Google Scholar 

  • Consani, K., and Pimentel, G.C. (1987). ‘Infrared spectra of the clathrate hydrates of acetylene and of acetylene/acetone,’ J. Phys. Chem. 91, 289–293.

    Article  Google Scholar 

  • d’Hendecourt, L.B., Allamandola, L.J., and Greenberg, J.M. (1985). ‘Time dependent chemistry in dense molecular clouds I. Grain surface reactions, gas/grain interactions and infrared spectroscopy,’ Astron. Astrophys. 152, 130–150.

    ADS  Google Scholar 

  • Donn, B. (1990). ‘The accumulation and structure of comets,’ in this volume.

    Google Scholar 

  • Draine, B.T., and Salpeter, E.E. (1977). ‘Time-dependent nucleation theory,’ J. Chem. Phys. 67, 2230–2235.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Krankowski, D., Schulte, W., Dolder, U., Lammerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M. (1987). ‘The CO and N2 abundance in comet P/Halley,’ Astron. Astrophys. 187, 481–484.

    ADS  Google Scholar 

  • Engel, S., Lunine, J.I., and Lewis, J.S. (1990). ‘Solar nebula origin for volatiles in Halley’s comet,’ preprint, Icarus, in press.

    Google Scholar 

  • Fegley, B., Jr., and Prinn, R.G. (1989). ‘Solar nebula chemistry: Implications for volatiles in the solar nebula,’ The Formation and Evolution of Planetary Systems, H.A. Weaver, and L. Danley (eds.), Cambridge University Press, Cambridge, pp. 171–211.

    Google Scholar 

  • Festou, M.C., Feldman, P.D., A’Hearn, M.F., Arpigny, C., Cosmovici, C.B., Danks, A.C., McFadden, L.A., Gilmozzi, R., Patriarchi, P., Tozzi, G.P., Wallis, M.K., and Weaver, H.A. (1986). ‘IUE observations of comet Halley during the Vega and Giotto encounters,’ Nature 321, 361–363.

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1982). ‘What are comets made of? A model based on interstellar dust,’ Comets, L.L. Wilkening (ed.), University of Arizona Press, Tucson, pp. 131–163.

    Google Scholar 

  • Grim, R.J.A., and Greenberg, J.M. (1987). ‘Photoprocessing of H2S in interstellar grain mantles as an explanation for S2 in comets,’ Astron. Astrophys. 181, 155–168.

    ADS  Google Scholar 

  • Hayashi, C. (1981). ‘Structure of the solar nebula, growth and decay of magnetic fields and effect of magnetic and turbulent viscosities on the nebula,’ Suppl. Prog. Theor. Phys. No. 70, 35–53.

    Article  ADS  Google Scholar 

  • Huebner, W.F., Boyce, D.C., and Sharp, C.M. (1987). ‘Polyoxymethylene in Comet Halley,’ Astrophys. J. 320, L149–L152.

    Article  ADS  Google Scholar 

  • Irvine, W.M. (1990). ‘Cold, dark interstellar clouds: Can gas-phase reactions explain the observations?’, Chemistry and Spectroscopy of Interstellar Molecules, N. Kaifu (ed.), University of Tokyo Press, in press.

    Google Scholar 

  • Jessburger, E. (1990). ‘Chemical properties of cometary dust,’ in this volume.

    Google Scholar 

  • Kawara, K., Gregory, B., Yamamoto, T., and Shibai, H. (1988). ‘Infrared spectroscopic observation of methane in comet P/Halley,’ Astron. Astrophys. 207, 174–181.

    ADS  Google Scholar 

  • Krankowski, D., Lämmerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrmann, U., Schulte, W., Berthelier, J.J., Illiano, J.M., Hodges, R.R., and Hoffman, J.H. (1986). ‘In situ gas and ion measurements at comet Halley,’ Nature 321, 326–329.

    Article  ADS  Google Scholar 

  • Klinger, J. (1990). ‘Physical properties of frozen volatiles—Their relevance to the study of comet nuclei,’ in this volume.

    Google Scholar 

  • Kouchi, A. (1987). ‘Vapour pressure of amorphous H2O ice and its astrophysical implications,’ Nature 330, 550–552.

    Article  ADS  Google Scholar 

  • Kouchi, A. (1989). ‘Evaporation of H2O ice and its astrophysical implications,’ to be published in J. Crystal Growth (Proc. Int. Conf. Crystal Growth, held in Sendai, August, 1988).

    Google Scholar 

  • Kozasa, T., and Hasegawa, H. (1987). ‘Grain formation through nucleation process in astrophysical environments. II,’ Prog. Theor. Phys. 77, 1402–1410.

    Article  ADS  Google Scholar 

  • Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1988). ‘Airborne infrared spectroscopy of Comet Wilson (1986l) and comparison with Comet Halley,’ Astrophys. J., 338, 1106–1114.

    Article  ADS  Google Scholar 

  • Laufer, D.E., Kochavi, E., and Bar-Nun, A. (1987). ‘Structure and dynamics of amorphous water ice,’ Phys. Rev. B36, 9219–9227.

    ADS  Google Scholar 

  • Lewis, J.S. (1974). ‘The temperature gradient in the solar nebula,’ Science 186, 440–443.

    Article  ADS  Google Scholar 

  • Lewis, J.S., and Prinn, R.G. (1980). ‘Kinetic inhibition of CO and N2 reduction in the solar nebula,’ Astrophys. J. 238, 357–364.

    Article  ADS  Google Scholar 

  • Lunine, J.I. (1989). ‘Primitive bodies: Molecular abundances in Comet Halley as probes of cometary formation environment,’ The Formation and Evolution of Planetary Systems, H.A. Weaver, L. Danley, and F. Paresce (eds.), Cambridge University Press, Cambridge, pp. 213–242.

    Google Scholar 

  • Moore, M.H., Donn, B., and Hudson, R.L. (1988). ‘Vaporization of ices containing S2 — Implications for comets,’ Icarus 74, 399–412.

    Article  ADS  Google Scholar 

  • Moore, M.H., Donn, B., Khanna, R., and A’Hearn, M.F. (1983). ‘Studies of proton-irradiated cometary-type ice mixtures,’ Icarus 54, 388–405.

    Article  ADS  Google Scholar 

  • Moroz, V.I., Combes, M., Bibring, J.P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J.F., Sanko, N., Grigoriev, A.V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Y.V., Emerich, C., Lamarre, J.M., Rocard, F., Krasnopolsky, V.A., and Owen, T. (1987). ‘Detection of parent molecules in comet Halley, from the IKS-Vega experiment,’ Astron. Astrophys. 187, 513–518.

    ADS  Google Scholar 

  • Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1990). ‘Measurements of the ortho-para ratio and nuclear spin temperature of water vapor in comet P/Halley,’ Icarus, in press.

    Google Scholar 

  • Mumma, M.J., Weaver, H.A., and Larson, H.P. (1986). ‘The ortho/para ratio of water vapor in comet Halley,’ 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, vol. 1, pp. 341–346.

    Google Scholar 

  • Mumma, M.J., Weaver, H.A., and Larson, H.P. (1987). ‘The ortho-para ratio of water vapor in comet P/Halley,’ Astron. Astrophys. 187, 419–424.

    ADS  Google Scholar 

  • Prialnik, D., Bar-Nun, A., and Podolak, M. (1987). ‘Radiogenic heating of comets by 26A1 and implications for their time of formation,’ Astrophys. J. 319, 993–1002.

    Article  ADS  Google Scholar 

  • Prinn, R.G., and Fegley, B., Jr. (1989). ‘Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles,’ Origin and Evolution of Planetary and Satellite Atmospheres, S. Atrea, J. Pollack, and M. Matthews (eds.), University of Arizona Press, Tucson, pp. 78–136.

    Google Scholar 

  • Richardson, H.H., Wooldridge, P.J., and Devlin, J.P. (1985). ‘FT-IR spectra of vacuum deposited clathrate hydrates of oxirane H2S, THF, and ethane,’ J. Chem. Phys. 83, 4387–4394.

    Article  ADS  Google Scholar 

  • Rickman, H. (1990). ‘The thermal history and structure of cometary nuclei,’ in this volume.

    Google Scholar 

  • Sanford, S.A., and Allamandola, L.J. (1988). ‘The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity,’ Icarus 76, 201–224.

    Article  ADS  Google Scholar 

  • Sanford, S.A., Allamandola, L.J., Tielens, A.G.G.M., and Valero, G.J. (1988). ‘Laboratory studies of the infrared spectral properties of CO in astrophysical ices,’ Astrophys. J. 329, 498–510.

    Article  ADS  Google Scholar 

  • Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in comet P/Halley,’ Astron. Astrophys. 187, 475–480.

    ADS  Google Scholar 

  • Schmitt, B., and Klinger, J. (1987). ‘Different trapping mechanisms of gases by water ice and their relevance for cometary nuclei,’ Proc. Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 613–619.

    Google Scholar 

  • Schmitt, B., Greenberg, J.M., and Grim, R.J.A. (1989). ‘The temperature dependence of the CO infrared band strength in CO:H2O ices,’ Astrophys. J. 340, L33–L36.

    Article  ADS  Google Scholar 

  • Strazzulla, G., and Johnson, R.E. (1990). ‘Irradiation effects on comets and cometary debris,’ in this volume.

    Google Scholar 

  • Urey, H. (1952). The Planets, Oxford University Press, Oxford.

    Google Scholar 

  • Vanysek, V. (1990). ‘Isotopic ratios in comets,’ in this volume.

    Google Scholar 

  • Vanysek, V., and Rahe, J. (1978). ‘12C/13C ratio in comets,’ Moon and Planets 18, 441–445.

    Article  ADS  Google Scholar 

  • Wallis, M.K. (1980). ‘Radiogenic melting of primordial comet interior,’ Nature 284, 431–433.

    Article  ADS  Google Scholar 

  • Weaver, H.A., Mumma, M.J., and Larson, H.P. (1990). ‘Infrared spectroscopy of cometary parent molecules,’ in this volume.

    Google Scholar 

  • Whipple, F.L., and Stefanik, R.P. (1966). ‘On the physics and splitting of cometary nuclei,’ Mem. Soc. Roy. Sci. Liège, Sér. 5, 12, 33–52.

    ADS  Google Scholar 

  • Woods, T.N., Feldman, P.D., Dymond, K.F., and Sahnow, D.J. (1986). ‘Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon,’ Nature 324, 436–438.

    Article  ADS  Google Scholar 

  • Wyckoff, S., Lindholm, E., Wehinger, P.A., Peterson, B.A., Zucconi, J.-M., and Festou, M.C. (1989). ‘The 12C/13C abundance ratio in comet Halley,’ Astrophys. J. 339, 488–500.

    Article  ADS  Google Scholar 

  • Yabushita, S., and Wada, K. (1988). ‘Radioactive heating and layered structure of cometary nuclei,’ Earth, Moon, and Planets 40, 303–313.

    Article  ADS  Google Scholar 

  • Yamamoto, T. (1985a). ‘Formation environment of cometary nuclei in the primordial solar nebula,’ Astron. Astrophys. 142, 31–36.

    ADS  Google Scholar 

  • Yamamoto, T. (1985b). ‘Formation history and environment of cometary nuclei,’ Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 205–219.

    Chapter  Google Scholar 

  • Yamamoto, T., and Hasegawa, H. (1977). ‘Grain formation through nucleation process in astrophysical environment,’ Prog. Theor. Phys. 58, 816–828.

    Article  ADS  Google Scholar 

  • Yamamoto, T., and Kozasa, T. (1988). ‘The cometary nucleus as an aggregate of planetesimals,’ Icarus 75, 540–551.

    Article  ADS  Google Scholar 

  • Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983). ‘The chemical composition and thermal history of the ice of a cometary nucleus,’ Astron. Astrophys. 122, 171–176.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamamoto, T. (1991). Chemical Theories on the Origin of Comets. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics