Skip to main content

Tsunami Runup on Steep Slopes: How Good Linear Theory Really Is

  • Chapter
Tsunami Hazard

Abstract

This is a study of the application of linear theory for the estimation of the maximum runup height of long waves on plane beaches. The linear theory is reviewed and a method is presented for calculating the maximum runup. This method involves the calculation of the maximum value of an integral, now known as the runup integral. Laboratory and numerical results are presented to support this method. The implications of the theory are used to reevaluate many existing empirical runup correlations. It is shown that linear theory predicts the maximum runup satisfactorily. This study demonstrates that it is now possible to match complex offshore wave-evolution algorithms with linear theory runup solutions for the purpose of obtaining realistic tsunami inundation estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, I. A.: 1972, Handbook of Mathematical Functions, Natl. Bur. Stands., Washington, D.C.

    Google Scholar 

  • Carrier, G. F.: 1966, J. Fluid Mech. 24, 641–659.

    Article  Google Scholar 

  • Carrier, G. F.: 1971, Proc. 6th Summer Seminar on Applied Mathematics, RPI, Troy, NY, 1970, Amer Math. Soc.

    Google Scholar 

  • Carrier, G. F. and Greenspan, H. P.: 1958, J. Fluid Mech. 17, 97–110.

    Article  Google Scholar 

  • Grilli, S. and Svendsen, I. A.: 1989, Computations of nonlinear wave kinematics during propagation and runup on a slope, in Water Wave Kinematics (Proc. NATO-ARW, Moide, Norway), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Guza, R. T. and Thornton, E. B.: 1982, J. Geophys. Res. 87, 483–491.

    Article  Google Scholar 

  • Hall, J. V. and Watts, J. W.: 1953, TM 33, BEB, US Army Corps Eng.

    Google Scholar 

  • Heitner, K. L. and Housner, G. W.: 1970, Proc. ASCE, J. Wat. Harb. Coastal Engng., WW3, pp. 701–719.

    Google Scholar 

  • Kaistrenko, V. M., Mazova, R. K., Pelinofsky, E. N. and Simonov, K. V.: 1985, Tsunami Runup on Shore, Inst. Appl. Phys., U.S.S.R. Academy of Sciences, Gorky (in Russian).

    Google Scholar 

  • Keller, J. B. and Keller, H. B.: 1964, ONR Research Report Contract No. NONR-3828(00), Dept. of the Navy, Washington, D.C.

    Google Scholar 

  • Kim, S. K., Liu, P. L-F. and Ligett, J. A.: 1983. Coastal Engng. 7, 299–317.

    Article  Google Scholar 

  • Lamb, H.: 1932, Hydrodynamics, 6th edn., Cambridge University Press.

    Google Scholar 

  • Pedersen, G. and Gjevik, B.: 1983, J. Fluid Mech. 135, 283–299.

    Article  Google Scholar 

  • Pelinofsky, E. N.: 1989, Sci. Tsun. Hazards 7, 117–126.

    Google Scholar 

  • Pelinofsky, E. N., Golinko, V. I. and Mazova, R. K.: 1989, Tsunami wave runup on a beach; Exact analytical results, preprint No. 232, Inst. Appl. Phys., U.S.S.R. Academy of Sciences, Gorky (in English).

    Google Scholar 

  • Ohyama, T.: 1987, Proc. JSCE 381, II-7, 189–198. (in Japanese.)

    Google Scholar 

  • Shuto, N.: 1973, Coastal Engineering in Japan 16, 25–42.

    Google Scholar 

  • Synolakis, C. E.: 1986, The runup of long waves, PhD Thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Synolakis, C. E.: 1987, J. Fluid Mech. 185, 523–545.

    Article  Google Scholar 

  • Synolakis, C. E., Deb M. K. and Skjelbreia, E. J.: 1988a, Phys. Fluids 31, 1–4.

    Article  Google Scholar 

  • Synolakis, C. E.: 1988b, Quart. Appl. Math. 46, 105–107.

    Google Scholar 

  • Synolakis, C. E.: 1990, J. Water. Harb. Coast. Eng. 116, 252–266.

    Article  Google Scholar 

  • Svendsen, I. A.: 1974, Cnoidal waves over gently sloping bottom. Inst. Hydr. Eng., Techn. Univ. Denmark, Ser. Paper 6, Lyngby, Denmark.

    Google Scholar 

  • Tuck, E. O. and Hwang, L.: 1972, J. Fluid Mech. 51, 449–461.

    Article  Google Scholar 

  • Yeh, H.: 1991, Tsunami bore run-up, Natural Hazards 4, 209–220 (this issue).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Synolakis, C.E. (1991). Tsunami Runup on Steep Slopes: How Good Linear Theory Really Is. In: Bernard, E.N. (eds) Tsunami Hazard. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3362-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3362-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5486-7

  • Online ISBN: 978-94-011-3362-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics