Skip to main content

Geology and Chemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The two-billion year-old Purtuniq ophiolite comprises pillowed mafic flows, sheeted mafic dykes, gabbros, and minor plagiogranites, and an extensive suite of layered mafic and ultramafic cumulate rocks; depleted mantle rocks have not been observed. The tectonically dismembered ophiolite is similar in most physical and chemical respects to Phanerozoic ophiolites, and represents direct evidence for modern-style plate tectonic processes in the early Proterozoic. The preservedcrustal thickness is of the order of 7. 5–8 km; but may originally have been as much as 9–10 km thick. The pillowed volcanic rocks and sheeted dykes are tholeiitic, with rare earth and other trace element abundances most similar to modern MORBs. The cumulate rocks a,lso follow a tholeiitic trend in major element composition. The mafic nature of the volcanic pile, the absence of extensive pyroclastic rocks, and the presence of a well developed sheeted dyke complex stratigraphically underlying the volcanic rocks supports an oceanic spreading center origin for the ophiolite. Modally graded layers and adcumulate textures observed in thin section suggest that the layered mafic and ultramafic rocks are dominantly the result of cumulus crystallization. Cryptic compositional variations in relict igneous minerals, such as forsterite content in olivine, and chromium and titanium content of clinopyroxene do not vary systematically with stratigraphic height in the cumulate pile. This is thought to record the periodic input of fresh batches of primitive magma into the magma chamber. Nd-isotopic data suggest that two time-integrated depleted mantle sources were responsible for the generation of the ophiolite, one highly depleted (∈Nd + 4. 6 to + 5. 3), the other less so (∈Nd +2. 5 to +3. 6). Each source produced a suite of cumulate rocks and sheeted mafic dykes. The mutually intrusive nature of sheeted dykes from the two suites suggests that the two sources operated simultaneously, and in close proximity to one another. The physical extent of the ocean basin in which the ophiolite was generated is not well constrained.

M. R. St-Onge. Whole-rock geochemistry was paid for by the GSC. Labwork at Queen’s was supported by NSERC Operating Grant A8375 to H. Helmstaedt. Helmstaedt’s 1987 field visit to Cape Smith, which resulted in his prediction and subsequent discovery of the sheeted dykes in the Watts Group, was covered by NSERC A8375. The first author gratefully acknowledges the financial support of an NSERC Canada scholarship and additional funds from the Department of Geological Sciences, Queen’s University. A School of Graduate Studies and Research (Queen’s) grant toward travel expenses facilitated the first author’s participation in this Symposium. W. R. A. Baragar is thanked for his comments on an earlier version of this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous, 1972. Penrose conference field report. Geotimes, v. 17: 24–25.

    Google Scholar 

  • Arndt, N. T., 1983. Role of a thin, komatiite-rich oceanic crust in Archean plate tectonic processes. Geology, v. 11: 372–275.

    Article  Google Scholar 

  • Baragar, W. R. A., M. B. Lambert, N. Baglow, and I. Gibson, 1987. Sheeted dykes of the Troodos ophiolite, Cyprus, In: Mafic Dyke Swarms, H. C. Halls, and W. F. Fahrig, (Eds), Geological Association of Canada, Special Paper 34, pp. 257–272.

    Google Scholar 

  • Basaltic Volcanism Study Project (BVSP), 1981. Basaltic volcanism on the terrestrial planets. Permagon Press, Inc., New York, 1286 p.

    Google Scholar 

  • Beccaluva, L., D. Ohnenstetter and M. Ohnenstetter, 1979. Geochemical discrimination between ocean floor and island arc tholeiites- Application to some ophiolites. Canadian Journal of Earth Sciences, v. 16: 1874–1882.

    Article  Google Scholar 

  • Beccaluva, L., P. Di Girolamo, G. Macciotta, and V. Morra, 1983. Magma affinities and fractionation trends in ophiolites. Ofioliti, v. 8: 307–324.

    Google Scholar 

  • Bégin, N. J., 1989a. P-T conditions of metamorphism inferred from the metabasites of the Cape Smith Belt, northern Quebec. Geoscience Canada, v. 16: 151–154.

    Google Scholar 

  • Bégin, N. J., 1989b. Metamorphic zonation, mineral chemistry and thermobarometry, in metabasites of the Cape Smith Thrust-Fold Belt, northern Quebec: Implications for its thermotectonic evolution. unpublished Ph. D. thesis, Queen’s University, 313 p.

    Google Scholar 

  • Bégin, N. J. and D. M. Carmichael, 1987. Metabasites in the eastern Cape Smith Thrust-Fold Belt, northern Quebec: Metamorphic facies, mineral reactions and P-T-XCO2 estimates. Geological Association of Canada, Program with Abstracts, v. 12, p. 24

    Google Scholar 

  • Benn, K., A. Nicolas and I. Reuber, 1988. Mantle-crust transition and origin of wehrlitic magmas: Evidence from the Oman ophiolite. Tectonophysics, v. 151: 75–85.

    Article  Google Scholar 

  • Bickle, M. J., 1986. Implications of melting for stabilization of the lithosphere and heat loss in the Archean. Earth and Planetary Science Letters, v. 80: 314–324.

    Article  Google Scholar 

  • Cawood, P. A., and H. Williams, 1988. Acadian basement thrusting, crustal delamination, and structural styles in and around the Humber Arm allochthon, western Newfoundland. Geology, v. 16: 370–373.

    Article  Google Scholar 

  • Cawood, P. A., and H. Williams, 1990. Processes of ophiolite obduction in Oman and Newfoundland. Abstracts, Symposium on Ophiolite Genesis and Evolution of the Oceanic Lithosphere, Muscat, Oman. January, 1990.

    Google Scholar 

  • Christensen, N. I., and J. D. Smewing, 1981. Geology and seismic structure of the northern section of the Oman ophiolite. Journal of Geophysical Research, v. 86: 2545–2555.

    Article  Google Scholar 

  • Cochran, J. R., and F. Martinez, 1988. Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics, v 153: 25–53.

    Article  Google Scholar 

  • Coleman, R. G., 1971. Plate tectonic emplacement of upper mantle peridotites along continental edges. Journal of Geophysical Research, v. 76: 1212–1222.

    Article  Google Scholar 

  • Coleman, R. G., 1977. Ophiolites. Springer-Verlag, New York. 229 p.

    Book  Google Scholar 

  • Condie, K. C., 1976. Plate tectonics and crustal evolution. Permagon Press, Inc., New York,288 P

    Google Scholar 

  • Condie, K. C., 1981. Archean greenstone belts. Elsevier Scientific Publishing Co., New York, 434 p.

    Google Scholar 

  • Davis, D. W., R. H. Sutcliffe, and N. F. Trowell, 1988 Geochronological constraints on the tectonic evolution of a late Archean greenstone belt, Wabigoon subprovince, northwest Ontario, Canada. Precambrian Research, v. 39: 171–191.

    Article  Google Scholar 

  • Debari, S. M., and R. G. Coleman, 1989. Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research, v. 94: 4373–4391.

    Article  Google Scholar 

  • Dewey, J. F. and J. M. Bird, 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, v. 76: 3179–3206.

    Article  Google Scholar 

  • deWit, M. J., R. A. Hart and R. J. Hart, 1987. The Jamestown ophiolite complex, Barberton mountain belt: a section through 3. 5 Ga oceanic crust. Journal of African Earth Sciences, v. 6: 681–730.

    Article  Google Scholar 

  • Dick, H. J. B., and T. Bullen, 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, v. 86: 54–76.

    Article  Google Scholar 

  • Dimroth, E., L. Imreh, M. Rocheleau, and N. Goulet, 1982. Evolution of the south-central part of the Archean Abitibi Belt, Quebec. Part I: Stratigraphy and paleogeographic model. Canadian Journal of Earth Sciences, v. 19: 1729–1758.

    Article  Google Scholar 

  • Dunning, G. R., 1987. Geology of the Annieopsquotch Complex, southwest Newfoundland. Canadian Journal of Earth Sciences, v. 24: 1162–1174.

    Article  Google Scholar 

  • Elthon, D., J. A. Karson, J. F. Casey, J. Sullivan, and F. X. Siroky, 1986. Geochemistry of diabase dykes from the Lewis Hills Massif, Bay of Islands ophiolite: evidence for partial melting of oceanic crust in transform faults. Earth and Planetary Science Letters, v. 78: 89–103.

    Article  Google Scholar 

  • Emmermann, R., 1985. Basement geochemistry, hole 504B. In: Initial Reports of the Deep Sea Drilling Project, v. 83, Anderson, R. N., J. Honnorez, K. Becker et al., U. S. Government Printing Office, Washington: 183–199.

    Google Scholar 

  • Francis, D. M., A. J. Hynes, J. N. Ludden, and J. Bédard, 1981. Crystal fractionation and partial melting in in the petrogenesis of a Proterozoic high-MgO volcanic suite, Ungava Quebec. Contributions to Mineralogy and Petrology, v. 78: 27–36.

    Article  Google Scholar 

  • Francis, D., J. Ludden, and A. Hynes, 1983. Magma evolution in a Proterozoic rifting environment. Journal of Petrology, v. 24: 556–582.

    Article  Google Scholar 

  • Gass, I. G., 1968. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature, v. 220: 39–42.

    Article  Google Scholar 

  • Hargraves, R. B., 1986. Faster spreading or greater ridge length in the Archean? Geology, v. 14: 750–752.

    Article  Google Scholar 

  • Hawkins, J. W. Jr., 1980. Petrology of back-arc basins and island arcs: Their possible role in the origin of ophiolites. In: Proceedings of the International Ophiolite Symposium, Cyprus, 1979, Panayioutou, A., (Ed), pp. 244–254.

    Google Scholar 

  • Hegner, E. and M. L. Bevier, 1989. Geochemical constraints on the origin of mafic rocks from the Cape Smith Belt. Geoscience Canada, v. 16: 148–151.

    Google Scholar 

  • Helmstaedt, H., and J. M. Allen, 1977. Metagabbronorite from DSDP hole 334: an example of high-temperature deformation and recrystallization near the Mid-Atlantic Ridge. Canadian Journal of Earth Sciences, v. 14: 886–898.

    Article  Google Scholar 

  • Helmstaedt, H., W. A. Padgham, and J. A. Brophy, 1986. Multiple dikes in the Lower Kam Group, Yellowknife greenstone belt: Evidence for Archean sea-floor spreading? Geology, v. 14: 562–566.

    Article  Google Scholar 

  • Hoffman, P. F., 1985. Is the Cape Smith Belt (northern Quebec) a klippe? Canadian Journal of Earth Sciences, v. 22: 1361–1369.

    Article  Google Scholar 

  • Hoffman, P. F., 1988. United plates of America, the birth of a craton: Early Proterozoic assembly of Laurentia. Annual Reviews of Earth and Planetary Sciences, v. 16: 543–603.

    Article  Google Scholar 

  • Hoffman, P. F. and S. A. Bowring, 1984. Short-lived 1. 9 Ga continental margin and its destruction, Wopmay Orogen, northwest Canada. Geology, v. 12: 68–72.

    Article  Google Scholar 

  • Hoffman, P. F. and G. Ranalli, 1988. Archean oceanic flake tectonics. Geophysical Research Letters, v. 15: 1077–1080.

    Article  Google Scholar 

  • Hopson, C. A., and J. S. Pallister, 1980. Semail ophiolite magma chamber: I. Evidence from gabbro phase variation, internal structure and layering. In: Proceedings of the International Ophiolite Symposium, Cyprus, 1979, Panayioutou, A., (Ed): 402–404.

    Google Scholar 

  • Hopson, C. A., R. G. Coleman, R. T. Gregory, J. S. Pallister, and E. H. Bailey, 1981. Geologic section through the Samail ophiolite and associated rocks along a Muscat-Ibra transect, southeastern Oman mountains. Journal of Geophysical Research, v. 86: 2527–2544.

    Article  Google Scholar 

  • Hynes, A., and D. M. Francis, 1982. A transect of the early Proterozoic Cape Smith Foldbelt, New Quebec. Tectonophysics, v. 62: 251–278.

    Google Scholar 

  • Jensen, L. S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines, Miscellaneous Paper 66, 22 p.

    Google Scholar 

  • Jensen, L. S., 1985. Stratigraphy and petrogenesis of Archean metavolcanic sequences, southwestern Abitibi subprovince, Ontario. In: Evolution of Archean Supracrustal Sequences, Ayers, L. D., P. C. Thurston, K. D. Card, and W. Weber, (Eds), Geological Association of Canada Special Paper 28: 65–87.

    Google Scholar 

  • Juteau, T., M. Ernewein, I. Reuber, H. Whitechurch, and R. Dahl, 1988. Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman. Tectonophysics, v. 151: 107–135.

    Article  Google Scholar 

  • Kontinen, A., 1987. An early Proterozoic ophiolite-the Jormua mafic-ultramafic complex, northeast Finland. Precambrian Research, v. 35: 313–341.

    Article  Google Scholar 

  • Kröner, A., 1983. Proterozoic mobile belts compatible with the plate tectonic concept. In: Proterozoic Geology: Selected papers from an international symposium, Medaris, L. G., Jr., C. W. Byers, D. M. Mickelson and W. C. Shanks, (Eds), Geological Society of America, Memoir 161: 59–74.

    Google Scholar 

  • Lamothe, D., 1986. Développements récents dans la Fosse de l’Ungava. In: Exploration en Ungava: données récentes sur la géologie et gîologie. Lamothe, D., R. Gagnon, and T. Clark, (Eds), Ministère de l’Energie et des Ressources du Quebéc, DV 86–16: 1–6.

    Google Scholar 

  • Lamothe, D., C. Picard, and J. Moorhead, 1984. Région du lac Beauparlant, bande de Cap Smith-Maricourt, Nouveau-Québec. Ministère de l’Energie et des Ressources du Québec, DP 84–39.

    Google Scholar 

  • Lucas, S. B., 1989. Structural evolution of the Cape Smith Thrust Belt and the role of out-ofsequence faulting in the thickening of mountain belts. Tectonics, v. 8: 655–676.

    Article  Google Scholar 

  • Lucas, S. B., 1990. Relations between thrust belt evolution, grain-scale deformation, and metamorphic processes: Cape Smith Belt, northern Canada. Tectonophysics, v. 178: 151–182.

    Article  Google Scholar 

  • Malpas, J. and R. K. Stevens, 1977. The origin and emplacement of the ophiolite suite with examples from western Newfoundland. Geotectonics (English translation), v. 11: 453–466.

    Google Scholar 

  • Mével, C., M. Cannat, and D. S. Stakes, 1990. Influence of lithospheric stretching on hydrothermal processes in gabbros from slow-spreading ridges. Abstracts, Symposium on Ophiolite Genesis and Evolution of the Oceanic Lithosphere, Muscat, Oman. January, 1990.

    Google Scholar 

  • Moores, E. M., and F. J. Vine, 1969. Troodos massif, Cyprus, a deep ocean floor: Preliminary structural and petrologic evidence. EOS, Transactions of the American Geophysical Union, v. 50: 333

    Google Scholar 

  • Moores, E. M., and F. J. Vine, 1971. The Troodos massif, Cyprus, and other ophiolites as oceanic crust: Evaluation and implications. Transactions of the Royal Society of London, v. A268: 443–466.

    Google Scholar 

  • Moores, E. M., 1986. The Proterozoic ophiolite problem, continental emergence, and the Venus connection. Science, v. 234: 65–68.

    Article  Google Scholar 

  • Nisbet, E. G., and C. M. R. Fowler, 1983. Model for Archean plate tectonics. Geology, v. 11: 376–379.

    Article  Google Scholar 

  • O’Hara, M. J., 1977. Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature, v. 266: 503–507.

    Article  Google Scholar 

  • O’Hara, M. J. and R. E. Mathews, 1981. Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society of London, v. 138: 237–277.

    Article  Google Scholar 

  • Pallister, J. S., and C. A. Hopson, 1981. Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research, v. 86: 2593–2644.

    Article  Google Scholar 

  • Parrish, R. R., 1989. U-Pb geochronology of the Cape Smith Belt and Sugluk block, northern Quebec. Geoscience Canada, v. 16: 126–130.

    Google Scholar 

  • Pearce, J. A., 1982. Traces element characteristics of lavas from destructive plate margins. In: Andesites, Thorpe. R. S., (Ed), John Wiley and Sons: 525–548.

    Google Scholar 

  • Pearce, J. A., T. Alabaster, A. W. Shelton, and M. P. Searle, 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions of the Royal Society of London, A300: 299–317.

    Google Scholar 

  • Pearce, J. A., S. J. Lippard, and S. Roberts, 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites, In: Marginal Basin Geology. Kokelaar, B. P., and Howells, M. F., (Eds), Geological Society Special Publication 16: 77–94.

    Google Scholar 

  • Picard, C., 1986. Lithogéochimie de la partie centrale de la Fosse de l’Ungava. In: Exploration en Ungava: données récentes sur la géologie et gîologie. Lamothe, D., R. Gagnon, and T. Clark, (Eds), Ministère de l’Energie et des Ressources du Québec, DV 86–16: 57–72.

    Google Scholar 

  • Picard, C., D. Lamothe, M. Piboule, and R. Oliver, 1990. Magmatic and geotectonic evolution of a Proterozoic ocean basin system: The Ungava Trough (New Quebec). Precambrian Research, v. 47: 223–249.

    Article  Google Scholar 

  • Rosencrantz, E., 1983. The structure of sheeted dykes and associated rocks in North Arm massif, Bay of Islands ophiolite complex, and the intrusive process at oceanic spreading centers. Canadian Journal of Earth Sciences, v. 20: 787–801.

    Article  Google Scholar 

  • Saunders, A. D., J. Tarney, N. G. Marsh, and D. A. Wood, 1980. Ophiolites as ocean crust or marginal basin crust: A geochemical approach. in Proceedings of the International Ophiolite Symposium, Cyprus, 1979, Panayioutou, A., (Ed): 193–204.

    Google Scholar 

  • Scott, D. J., 1990. Geology and geochemistry of the early proterozoic Purtuniq ophiolite, Cape Smith Belt, northern Quebec, Canada. Unpublished Ph. D. thesis, Queen’s University, 289 p.

    Google Scholar 

  • Scott, D. J., M. R. St-Onge, S. B. Lucas, and H. Helmstaedt, 1988. The 1999 Ma Purtuniq Ophiolite: Imbricated oceanic crust obliquely exposed in the Cape Smith Thrust-Fold Belt, northern Quebec, Canada. Geological Society of America, Abstracts with Program, v. 20: A158.

    Google Scholar 

  • Scott, D. J., M. R. St-Onge, S. B. Lucas, and H. Helmstaedt, 1989. The 1998 Ma Purtuniq ophiolite: imbricated and metamorphosed oceanic crust in the Cape Smith Thrust Belt, northern Quebec. Geoscience Canada, v. 16: 144–148.

    Google Scholar 

  • Scott, D. J. and E. Hegner, 1990. Two mantle sources for the two-billion year-old Purtuniq ophiolite, Cape Smith Belt, northern Quebec. Geological Association of Canada, Program with Abstracts, v. 15: A118.

    Google Scholar 

  • Searle, M. P., 1985. Sequence of thrusting and origin of culminations in the northern and central Oman Mountains. Journal of Structural Geology, v. 7: 129–143.

    Article  Google Scholar 

  • Shervais, J. W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Sciences Letters, v. 59: 101–118.

    Article  Google Scholar 

  • Sleep, N. H., and B. F. Windley, 1982. Archean plate tectonics: Constraints and inferences. Journal of Geology, v. 90: 363–379.

    Article  Google Scholar 

  • Smith, S. E., and D. Elthon, 1988. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands complex. Journal of Geophysical Research, v. 93: 3450–3468.

    Article  Google Scholar 

  • Spray, J. G., 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. In: Ophiolites and Oceanic Lithosphere. Gass, I. G., S. J. Lippard, and A. W. Shelton, (Eds), Geological Society Special Publication 13: 255–268.

    Google Scholar 

  • Stockwell, C. H., 1950. The use of plunge in the construction of cross-sections of folds. Proceedings of the Geological Association of Canada, v. 3: 97–121.

    Google Scholar 

  • St-Onge, M. R., and J. E. King, 1987. Thermo-tectonic evolution of a metamorphic internal zone documented by axial projections and petrological P-T paths, Wopmay Orogen, northwest Canada. Geology, v. 15: 155–158.

    Article  Google Scholar 

  • St-Onge, M. R., and S. B. Lucas, 1989a. Tectonic controls on the thermal evolution of the Cape Smith Thrust Belt. Geoscience Canada, v. 16: 154–158.

    Google Scholar 

  • St-Onge, M. R., and S. B. Lucas, 1989b. Geology, lac Watts, Quebec, Geological Survey of Canada, Map 1721A, scale 1:50 000.

    Book  Google Scholar 

  • St-Onge, M. R., and S. B. Lucas, 1989c. Geology, Purtuniq, Quebec, Geological Survey of Canada, Map 1722A, scale 1:50 000.

    Book  Google Scholar 

  • St-Onge, M. R., and S. B. Lucas, 1990a. Evolution of the Cape Smith Belt: early Proterozoic continental underthrusting, ophiolite obduction and thick-skinned folding. In: The Early Proterozoic Trans-Hudson Orogen of North America. J. F. Lewry and M. E. Stauffer, (Eds), Geological Association of Canada, Special Paper, 37: 313–351.

    Google Scholar 

  • St-Onge, M. R., and S. B. Lucas, 1990b. Early Proterozoic collisional tectonics in the internal zone of the Ungava (Trans-Hudson) orogen: Lacs Nuvilik and Sugluk map areas, Québec. In: Current Research, Part C, Geological Survey of Canada, Paper 90–1C: 119–132.

    Google Scholar 

  • St-Onge, M. R., S. B. Lucas, D. J. Scott, and N. J. Bégin, 1986. Eastern Cape Smith Belt: an early Proterozoic thrust-fold belt and basal shear zone exposed in oblique section, Wakeham Bay and Cratere du Nouveau Quebec map areas, northern Quebec. In: Current Research, Part A, Geological Survey of Canada, Paper 86-IA: 1–14.

    Google Scholar 

  • St-Onge, M. R., S. B. Lucas, D. J. Scott, and N. J. Bégin, 1987. Tectonostratigraphy and structure of the lac Watts - lac Cross - rivière Deception area, central Cape Smith Belt, northern Quebec. In: Current Research, Part A, Geological Survey of Canada, Paper 87–1A: 619–632.

    Google Scholar 

  • St-Onge, M. R., S. B. Lucas, D. J. Scott, N. J. Begin, H. Helmstaedt, and D. M. Carmichael, 1988a. Thin-skinned imbrication and subsequent thick-skinned folding of rift-fill, transitional-crust, and ophiolite suites in the 1. 9 Ga Cape Smith Belt, northern Quebec. In: Current Research, Part C, Geological Survey of Canada, Paper 88–1C: 1–18.

    Google Scholar 

  • St-Onge, M. R., S. B. Lucas, D. J. Scott, and N. J. Bégin, 1988b. Geology, eastern portion of the Cape Smith Belt, parts of the Wakeham Bay, Cratère du Nouveau Quebec, and Nuvilik Lakes map areas, northern Quebec. Geological Survey of Canada, Open File 1730, 16 maps, 1:50,000 scale.

    Google Scholar 

  • St-Onge, M. R., S. B. Lucas, D. J. Scott, and N. J. Begin, 1989. Evidence for the development of oceanic crust and for continental rifting in the tectonostratigraphy of the Early Proterozoic Cape Smith Belt. Geoscience Canada, v. 16: 119–122.

    Google Scholar 

  • Sturt, B. A., A. Thon, and H. Furnes, 1980. The geology and preliminary geochemistry of the Karmoy ophiolite, S. W. Norway. in Proceedings of the International Ophiolite Symposium, Cyprus, 1979, Panayioutou, A., (Ed): 538–553.

    Google Scholar 

  • Suen, C. J., F. A. Frey, and J. Malpas, 1979. Bay of Islands ophiolite suite, Newfoundland: Petrological and geochemical characteristics with emphasis on rare earth element geochemistry. Earth and Planetary Science Letters, v. 45: 337–348.

    Article  Google Scholar 

  • Sun, S. S., R. W. Nesbit, and A. Y. Sharaskin, 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth and Planetary Science Letters, v. 44: 119–138.

    Article  Google Scholar 

  • Taylor, S. R., and S. M. McLennan, 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, 312 p.

    Google Scholar 

  • Tual, E., B. M. Jahn, H. Bougault, and J. L. Joron, 1985. Geochemistry of basalts from hole 504B, Leg 83, Costa Rica rift. In: Initial Reports of the Deep Sea Drilling Project, v. 83, Anderson, R. N., J. Honnorez, K. Becker et al., U. S. Government Printing Office, Washington: 201–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scott, D.J., St-Onge, M.R., Lucas, S.B., Helmstaedt, H. (1991). Geology and Chemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics