Skip to main content

Time-Space Distribution and Petrologic Diversity of Japanese Ophiolites

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The Japanese ophiolites occur as nappes and melanges. Nappe-type ophiolites formed and were emplaced within 20-30 Ma in the Ordovician, Permian, and Jurassic-Cretaceous periods, corresponding to the circum-Pacific ophiolite pulses. The Paleozoic ophiolite nappes (Yakuno, Oeyama, Miyamori and others) are distributed in Honshu, while the Mesozoic ones (Horokanai, Poroshiri and others) are in Hokkaido. In southwestern Honshu, the Jurassic accretional complex is overthrust by the Permian Yakuno ophiolite which in turn is overridden by the Ordovician Oeyama ophiolite. This relationship is a mirror image of the superposing ophiolite nappes of corresponding ages in the Klamath Mountains. Downward (oceanward) younging of ophiolite nappes is a common feature on both sides of the Pacific.

The fragments in a melange-type ophiolite may span more than 100 Ma in age. Paleozoic-Mesozoic ophiolite melanges in Honshu (Omi, Kurosegawa, Mikabu, and Motai) and Hokkaido (Kamuikotan and Tokoro) are aill affected by high-pressure blueschist metamorphism, and some of them are overlain by nappe-type ophiolites. Cenozoic ophiolite melanges (Setogawa and Mineoka) occur in front of the Izu island arc which has collided with Japan since Miocene, but do not contain high-pressure metamorphic rocks.

The Japanese ophiolites show wide petrologic diversity. The residual mantle peridotite ranges from fertile lherzolite to highly depleted harzburgite. The mafic-ultramafic cumulates include plagioclase-type, clinopyroxenetype, and orthopyroxene-type. MORBs are dominant among Japanese ophiolitic basalts, but alkali basalts and picrites are common in melange-type ophiolites. The occurrence of highly depleted harzburgite which can not coexist with MORB, phlogopite-bearing harzburgite, and gabbros of arc tholeiite mineralogy indicates island-arc origin of some ophiolites. Most of Japanese nappe-type ophiolites may be fragments of ancient oceanic crust-mantle forming island arc-marginal basin systems, and the melange-type ophiolites may represent underlying subduction zone, in which subducting MORB crust-mantle, seamounts and oceanic arc volcanoes were crushed and mixed-up.itself, and the ophiolitic nappes represent hanging wall of the subduction zone, i.e. crust-mantle section of the island arc-marginal basin system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbate, E., Bortolotti, V., Passerini, P. and Principi, G., 1985. The rhythm of Phanerozoic ophiolites. Ofioliti, 10: 109–138.

    Google Scholar 

  • Aoki, K., 1971. Petrology of mafic inclusions from Ichinomegata, Japan. Contrib. Mineral. Petrol., 30: 314–331.

    Article  Google Scholar 

  • Arai, S., 1980. Dunite-harzburgite-chromitite complexes as refractory residue in the SangunYamaguchi zone, western Japan. J. Petrology, 21: 141–165.

    Article  Google Scholar 

  • Arai, S. and Uchida, T., 1978. Highly magnesian dunite from the Mineoka belt, central Japan. J. Japan. Assoc. Min. Petr. Econ. Geol., 73: 176–179.

    Article  Google Scholar 

  • Asahina, T. and Komatsu, M., 1979. The Horokanai ophiolitic complex in the Kamuikotan tectonic belt, Hokkaido, Japan. J. Geol. Soc. Japan, 85: 317–330.

    Article  Google Scholar 

  • Cannat, M., 1985. Tectonics of the Seiad massif, northern Klamath Mountains, California. Geol. Soc. Amer. Bull, 96: 15–26.

    Article  Google Scholar 

  • Charvet, J., Faure, M., Caridroit, M. and Guidi, A., 1985. Some tectonic and tectogenetic aspects of SW Japan: an alpine-type orogen in an island-arc position. In: N. Nasu et al. (Eds), “Formation of Active Ocean Margins”, pp. 791–817, Terra Sci. Publ., Tokyo.

    Chapter  Google Scholar 

  • Church, W.R. and Riccio, L., 1977. Fractionation trend of the Bay of Islands ophiolite of Newfoundland: polycyclic cumulate sequences in ophiolites and their classification. Can. J. Earth Sci., 14: 1156–1165.

    Google Scholar 

  • Coleman, R.G., 1977. Ophiolites ancient oceanic lithosphere?. Springer Verlag, Berlin; 229 pp.

    Google Scholar 

  • Coleman, R.G., 1986. Ophiolites and accretion of the North American Cordillera. Bull Soc. geol. France, 1986: 961–968.

    Google Scholar 

  • Coleman, R.G., Manning, C.E., Donato, M.M., Mortimer, N. and Hill, L.B., 1988. Tectonic and regional metamorphic framework of the Klamath Mountains and adjacent Coast Ranges, California and Oregon. In W.G. Ernst (Ed), “Metamorphism and Crustal Evolution of the Western United States”, (Rubey Volume) pp. 1061–1097, Prentice-Hall, London.

    Google Scholar 

  • DeBari, S.M. and Coleman, R.G. (1989): Examination of the deep levels of an island arc: evidence from the Tonsina ultra-mafic-mafic assemblage, Tonsina, Alaska. J. Geophys Res., 94: 4373–4391.

    Article  Google Scholar 

  • Ernst, W.G., 1972. Possible Permian oceanic crust and plate junction in central Shikoku, Japan. Tectonophsics, 15: 233–239.

    Article  Google Scholar 

  • Faure, M. and Charvet, J., 1984. Mesozoic nappe structures in SW Japan, from the example of eastern Shikoku and Kinki area. Sci. Geol. Bull. (Strasbourg), 37: 51–63.

    Google Scholar 

  • Hara, I., 1982. Evolutional processes of paired metamorphic belts: Hida belt and Sangun belt. Mem. Geol. Soc. Japan. No. 21, pp. 71–89.

    Google Scholar 

  • Harper, G.D., 1980. The Josephine ophiolite: remains of a late Jurassic marginal basin in northwestern California. Geology, 8: 333–337.

    Article  Google Scholar 

  • Herve, F., Godoy, E., Parada, M.A., Ramos, V., Rapela, C., Mpodozis, C. and Davidson, J., 1987. A general view on the Chilean-Argentine Andes, with emphasis on their early history. In: J.W.H. Monger and J. Francheteau (Eds), “Circum-Pacific orogenic belts and evolution of the Pacific ocean basin”, Geodynamics Ser. Vol. 18, pp. 97–113, AGU-GSA.

    Chapter  Google Scholar 

  • Hiroi, Y., 1981. Subdivision of the Hida metamorphic complex, central Japan, and its bearing on the geology of the Far East in pre-Sea of Japan time. Tectonophysics, 76: 317–333.

    Article  Google Scholar 

  • Huzimoto, H., 1937. The nappe-theory with reference to the northeastern part of the Kwanto Mountainland. Sci. Rep. Tokyo Bunrika Univ., Sec. C, No. 6, 215–244.

    Google Scholar 

  • Irwin, W.P., 1977. Ophiolitic terranes of California, Oregon, and Nevada. In: R.G. Coleman and W.P. Irwin (Eds), “North American Ophiolites”, Oregon State Dept. Geol. Min. Indst. Bull., No. 95, 75–92.

    Google Scholar 

  • Ishiga, H., 1983. Two suites of stratigraphic succession within the Tamba Group in the western part of the Tamba belt, Southwest Japan. J. Geol. Soc. Japan, 89: 443–454 (in Japanese with English abstract).

    Article  Google Scholar 

  • Ishiga, H., 1986. Ultra-Tamba zone of Southwest Japan. J. Geosci. Osaka City Univ., 29, 45–88.

    Google Scholar 

  • Ishiga, H. and Ishiyama, D., 1987. Jurassic accretionary complex in Kaminokuni terrane, Southwestern Hokkaido, Japan. Mining Geology (Tokyo), 37: 381–394.

    Google Scholar 

  • Ishiwatari, A., 1978. A preliminary report on the Yakuno ophiolite in the Maizuru zone, Inner Southwest Japan. Earth Sci. (Chikyu Kagaku), 32, 301–310 (in Japanese with English abstract).

    Google Scholar 

  • Ishiwatari, A., 1985a. Granulite-facies metacumulates of the Yakuno ophiolite, Japan: evidence for unusually thick oceanic crust. J. Petrology, 26, 1–30.

    Article  Google Scholar 

  • Ishiwatari, A., 1985b. Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity of ophiolites. Contrib. Mineral Petrol., 89: 155–167.

    Article  Google Scholar 

  • Ishiwatari, A., 1990. Yakuno ophiolite and related rocks in the Maizuru Terrane. In Ichikawa K. et al. (Eds), “Pre-Cretaceous Terranes of Japan” (Publ. IGCP Prbject 224), pp. 109–120, Osaka.

    Google Scholar 

  • Ishiwatari, A., Ikeda, Y. and Koide, Y., 1990. The Yakuno ophiolite, Japan: fragments of Permian island arc and marginal basin crust with a hot spot. Proceedings of the Troodos 87 Symposium, pp. 497–506.

    Google Scholar 

  • Ishizuka, H., 1980. Geology of the Horokanai ophiolite in the Kamuikotan tectonic belt,Hokkaido. J. Geol. Soc. Japan, 86: 119–134 (in Japanese with English abstract).

    Article  Google Scholar 

  • Ishizuka, H., 1981. Geochemistry of the Horokanai ophiolite in the Kamuikotan tectonic belt,Hokkaido, Japan. J. Geol. Soc. Japan, 87: 17–34.

    Article  Google Scholar 

  • Ishizuka, H., 1985. Prograde metamorphism of the Horokanai ophiolite in the Kamuikotan Zone, Hokkaido, Japan. J. Petrology, 26: 391–417.

    Article  Google Scholar 

  • Ishizuka, H., 1987. Igneous and metamorphic petrology of the Horokanai ophiolite in the Kamuikotan zone, Hokkaido, Japan: a synthetic thesis. Mem. Fac. Sci., Kochi Univ., Ser. E. Geology, 8: 1–70.

    Google Scholar 

  • Iwasaki, M., 1979. Gabbroic breccia (olistostrome) in the Mikabu green stone belt of the eastern Shikoku. J. Geol. Soc. Japan, 85: 481–487.

    Article  Google Scholar 

  • Jahn, B.-M., 1986. Mid-ocean ridge or marginal basin origin of the East Taiwan ophiolite: chemical and isotopic evidence. Contrib. Mineral. Petrol., 92: 194–206.

    Article  Google Scholar 

  • Jakes, P. and Miyake, Y.. 1984. Magma in forearcs: implication for ophiolite generation. Tectonophysics, 106: 349–358.

    Article  Google Scholar 

  • Jolivet, M., 1986. A tectonic model for the evolution of the Hokkaido central belt: Late Jurassic collision of the Okhotsk with Eurasia. Monogr. Assoc. Geol. Collab. Japan, No. 31, 355–377.

    Google Scholar 

  • Kiminami, K., Kito, N. and Tajika, J. (1985): Mesozoic Group in Hokkaido: stratigraphy and age, and their significance. Earth Sci. (Chikyu Kagaku), 39, 1–17 (in Japanese with English abstract).

    Google Scholar 

  • Kobayashi, T., 1941. The Sakawa orogenic cycle and its bearing on the origin of the Japanese Islands. J. Fac. Sci. Univ. Tokyo, Sec. 2: 219–578.

    Google Scholar 

  • Koide, Y., Sano, S., Ishiwatari, A. and Kagami, H., 1987. Geochemistry of the Yakuno ophiolite in Southwest Japan. J. Fac. Sci. Hokkaido. Univ., Ser. IV, 22: 297–312.

    Google Scholar 

  • Komatsu, M., Ujihara, M. and Chihara, K., 1985. Pre-Tertiary basement structure in the Inner Zone of Honshu and the North Fossa Magna region. Sci. Rept. Niigata Univ., Ser. E, No. 6, 17–35 (in Japanese with English abstract).

    Google Scholar 

  • Kunugiza, K., Takasu, A. and Banno, S., 1986. The origin and metamorphic history of the ultramafic and metagabbro bodies in the Sanbagawa metamorphic belt. Geol. Soc. Amer. Mem., 164: 375–385.

    Google Scholar 

  • Kuroda, Y., Kurokawa, K., Uruno, K., Kinugawa, T., Kano, H., and Yamada, T., 1976. Staurolite and kyanite from epidote-hornblende rock in the Oeyama (Komori) ultramafic mass, Kyoto Prefecture, Japan. Earth Sci. (Chikyu Kagaku), 30: 331–335.

    Google Scholar 

  • Kuroda, Y. and Shimoda, S., 1967. Olivine with well-developed cleavages: its geological and mineralogical meanings. J. Geol. Soc. Japan, 73: 377–388.

    Article  Google Scholar 

  • Kurokawa, K., 1985. Petrology of the Oeyama ophiolitic complex in the Inner Zone of Southwest Japan. Sci. Rept. Niigata Univ. Ser. E, No. 6, 37–113.

    Google Scholar 

  • Lindsley-Griffin, N., 1977. The Trinity ophiolite, Klamath Mountains, California. In: R.G. Coleman and W.P. Irwin (Eds), `North American Ohiolites“, Oregon State Dept. Geol. Min. Indst. Bull. 95: 107–120.

    Google Scholar 

  • Maekawa, H., 1981. Geology of the Motai Group in the southwestern part of the Kitakami Mountains. J. Geol. Soc. Japan, 87: 543–554 (in Japanese with English abstract).

    Google Scholar 

  • Maekawa, H., 1989. Two modes of mixing of Biei ophiolitic melange, Kamuikotan blueschist belt, Japan. J. Geol., 87: 543–554.

    Google Scholar 

  • Maruyama, S., Banno, S., Matsuda, T. and Nakajima, T., 1984. Kurosegawa zone and its bearing on the development of the Japanese Islands. Tectonophysics, 110: 47–60.

    Article  Google Scholar 

  • Miyake, Y., 1985. MORB-like tholeiites formed within the Miocene forearc basin, Southwest Japan. Lithos, 18: 23–34.

    Article  Google Scholar 

  • Miyashiro, A., 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett., 19: 218–224.

    Article  Google Scholar 

  • Miyashiro, A., 1975. Classification, characteristics. and origin of ophiolites. J. Geology, 83: 249–281.

    Article  Google Scholar 

  • Miyashiro, A., 1986. Hot regions and the origin of marginal basins in the Western Pacific. Tectonophysics, 122: 195–216.

    Article  Google Scholar 

  • Miyashita, S., 1983. Reconstruction of the ophiolite succession in the western zone of the Hidaka metamorphic belt, Hokkaido. J. Geol. Soc. Japan, 89: 69–86 (in Japanese with English abstract).

    Google Scholar 

  • Miyashita, S. and Yoshida, A., 1988. Pre-Cretaceous and Cretaceous ophiolites in Hokkaido, Japan. Bull. Soc. Geol. France, 1988: 251–260.

    Google Scholar 

  • Mori, T. and Banno, S., 1973. Petrology of peridotite and garnet clinopyroxenite of the Mt. Higasi-Akaisi mass, central Shikoku, Japan: subsolidus relation of anhydrous phases. Contrib. Mineral. Petrol., 41: 301–323.

    Article  Google Scholar 

  • Nagata, J., 1982. Magnesioferrite-olivine rock and monticellite-bearing dunite from the Iwanaidake alpine-type peridotite mass in the Kamuikotan structural belt, Hokkaido, Japan. J. Japan. Assoc. Min. Petr. Econ. Geol., 77: 23–31.

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic Publishers, Dordrecht, 367pp.

    Book  Google Scholar 

  • Nicolas, A. and Jackson, E.D., 1972. Repartition en deux provinces des péridotites des châines alpines longeant la Méditerranée: implications géotectoniques. Schweiz. Min. Petrogr. Mitt., 52: 479–495.

    Google Scholar 

  • Niida, K., 1984. Petrology of the Horoman ultramafic rocks in the Hidaka metamorphic belt, Hokkaido, Japan. Jour. Fac. Sci., Hokkaido Univ., Ser IV, 21: 197–250.

    Google Scholar 

  • Niida, K. and Kito, N., 1986. Cretaceous arc-trench systems in Hokkaido. Monogr. Assoc. Geol. Collab. Japan, 31: 379–402 (in Japanese with English abstract).

    Google Scholar 

  • Nishimura, Y. and Shibata, K., 1989. Modes of occurrence and K-Ar ages of metagabbroic rocks in the “Sangun metamorphic belt”, Southwest Japan. Mem. Geol. Soc. Japan, 33: 343–357 (in Japanese with English abstract).

    Google Scholar 

  • Onuki, H., 1965. Petrochemical research on the Horoman and Miyamori ultramafic intrusives, northern Japan. Sci Rept. Tohoku Univ., Ser. III, 9: 217–276.

    Google Scholar 

  • Ozawa, K., 1983. Relationships between tectonite and cumulate in ophiolites: the Miyamori ultramafic complex, Kitakami Mountains, northeast Japan. Lithos, 16: 1–16.

    Article  Google Scholar 

  • Ozawa, K., 1984. Geology of the Miyamori ultramafic complex in the Kitakami Mountains,northeast Japan. J. Geol. Soc. Japan, 90: 697–716.

    Article  Google Scholar 

  • Ozawa, K., 1988. Ultramafic tectonite of the Miyamori ophiolitic complex in the Kitakami Mountains, Northeast Japan: hydrous upper mantle in an island arc. Contrib. Mineral Petrol., 99: 159–175.

    Article  Google Scholar 

  • Ozawa, K., Shibata, K. and Uchiumi, S., 1988. K-Ar ages of hornblende in gabbroic rocks from the Miyamori ultramafic complex of the Kitakami Mountains. J. Japan. Assoc. Petr. Min. Econ. Geol., 83: 150–159. (in Japanese with English abstract)

    Article  Google Scholar 

  • Quick, J.E., 1981. Petrology and petrogenesis of the Trinity peridotite, an upper mantle diaper in the eastern Klamath Mountains, northern California. J. Geophys. Res., 86: 11837–11863.

    Article  Google Scholar 

  • Saito, Y. and Hashimoto, M., 1982. South Kitakami region: an allochthonous terrane in Japan.J. Geophys. Res., 87: 3691–3696.

    Article  Google Scholar 

  • Saito, Y., Tiba, T. and Matsubara, S., 1979. Ultramafic complex and its mechanical sedimentary derivatives in the Tonmakuyama area, north of Hamana-ko, Central Japan. Mem. Nation. Sci. Mus., Tokyo, 12: 29–44.

    Google Scholar 

  • Sakakibara, M., 1986. A newly discovered high-pressure terrane in eastern Hokkaido, Japan. J. metamorphic Geol., 4.

    Google Scholar 

  • Saleeby, J.B., Harper, G.D., Snoke, A.W. and Sharp, W.D., 1982. Time relations and structural-stratigraphic patterns in ophiolite accretion, West Central Klamath Mountains, California. J. Geophys. Res., 87: 3831–3848.

    Article  Google Scholar 

  • Sample, J.C. and Fisher, D.M., 1986. Duplex accretion and underplating in an ancient accretionary complex, Kodiak Islands, Alaska. Geology 14: 160–163.

    Article  Google Scholar 

  • Saunders, A.D., Tarney, J., Stern, C.R. and Dalziel, I.W.D., 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Geol. Soc. Amer. Bull., 90: 237–258.

    Article  Google Scholar 

  • Shibata, K. and Nishimura, Y., 1989. Isotopic ages of the Sangun crystalline schists, SouthwestJapan. Mem. Geol. Soc. Japan, 33: 317–341. (in Japanese with English abstract)

    Google Scholar 

  • Snoke, A.W., 1977. A thrust plate of ophiolitic rocks in the Preston Peak area, Klamath Mountains, California. Geol. Soc. Am. Bull., 88: 1641–1659.

    Article  Google Scholar 

  • Sugisaki, R., Mizutani, S., Hattori, H., Adachi, M. and Tanaka, T., 1972. Late Paleozoic geosynclinal basalt and tectonism in the Japanese Islands. Tectonophysics, 14: 35–56.

    Article  Google Scholar 

  • Sugisaki, R., Suzuki, T., Kanmera, K., Sakai, T. and Sano, H., 1979. Chemical compositions of green rocks in the Shimanto belt, Southwest Japan. J. Geol. Soc. Japan, 85: 455–466.

    Article  Google Scholar 

  • Suzuki, H., Isozaki, Y. and Itaya, T., 1990. Tectonic superposition of the Kurosegawa terrane upon the Sanbagawa metamorphic belt in eastern Shikoku, Southwest Japan: K-Ar ages of weakly metamorphosed rocks in northeastern Kamikatsu Town, Tokushima Prefecture. J. Geol. Soc. Japan, 96: 143–153 (in Japanese with English abstract).

    Article  Google Scholar 

  • Takasawa, K., 1976. Anorthite in peridotites from the Setogawa Group, Shizuoka Prefecture, Central Japan. Earth Sci. (Chikyu Kagaku), 30: 163–169.

    Google Scholar 

  • Takasu, A., 1984. Prograde and retrograde eclogites in the Sanbagawa metamorphic belt, Besshi district, Japan. J. Petrol, 25: 619–643.

    Article  Google Scholar 

  • Taniguchi, H. and Ogawa, Y., 1990. Occurrence, chemistry and tectonic significance of alkali basaltic rocks in the Miura Peninsula, Central Japan. J. Geol. Soc. Japan, 96: 101–116. (in Japanese with English abstract)

    Article  Google Scholar 

  • Tazawa, J., 1988. Paleozoic-Mesozoic stratigraphy and tectonics of the Kitakami Mountains, northeast Japan. Earth Sciene (Chikyu Kagaku), 42: 165–178 (in Japanese with English abstract).

    Google Scholar 

  • Uda, S., 1984. The contact metamorphism of the Oeyama ultrabasic mass and the genesis of the “cleavable olivine”. J. Geol. Soc. Japan, 90: 393–410 (in Japanese with English abstract).

    Article  Google Scholar 

  • Varne, R. and Brown, A.V., 1978. The geology and petrology of the Adamsfield ultramafic complex, Tasmania. Contrib. Mineral. Petrol. 67: 195–207.

    Article  Google Scholar 

  • Watanabe, T. and Maekawa, H., 1985. Early Cretaceous dual subduction system in and around the Kamuikotan tectonic belt, Hokkaido, Japan. In: N. Nasu et al. (Eds), “Formation of Active Ocean Margins”, pp. 677–699, Terra Sci. Publ., Tokyo.

    Chapter  Google Scholar 

  • Watanabe, T., Tokuoka, T. and Naka, T., 1987. Complex fragmentation of Permo-Triassic and Jurassic accreted terranes in the Chugoku region, Southwest Japan and the formation of the Sangun metamorphic rocks. In: E.C. Leitch and E. Scheibner (Eds) “Terrane Accretion and Orogenic Belts” (Geodynamic Series Vol. 19), pp. 275–289.

    Chapter  Google Scholar 

  • Yokoyama, K., 1990. Nikubuchi peridotite body in the Sanbagawa metamorphic belt: thermal history of the Al-pyroxene-rich suite’ peridotite body in high-pressure metamorphic terrane. Contrib. Mineral. Petrol., 73: 1–13.

    Article  Google Scholar 

  • Yokoyama, K., 1987. Ultramafic rocks in Kurosegawa tectonic zone, Southwest Japan. J. Japan. Assoc. Min. Petr. Econ. Geol., 87: 319–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ishiwatari, A. (1991). Time-Space Distribution and Petrologic Diversity of Japanese Ophiolites. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics