Skip to main content

Chert-Hosted Manganese Deposits in the Wahrah Formation: A Depositional Model

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The non-metamorphic, stratiform manganese deposits in the Wahrah Formation (Al Hammah Range, 125 km south of Muscat) are of upper Berriasian to Hauterivian age. The manganese enriched horizons are continuously exposed over several 100 km2. Sedimentological and geochemical features prove that the host rock of the manganese deposits exclusively consisting of red cherts are of biogenic, non-hydrothermal origin, deposited in a distal part of the Hawasina basin. A depositional (geochemical) environment comparable to that of a siliceous ooze facies is highly likely. Geochemically the manganese layered cherts and nodules, with their extremely high Mn/Fe ratio and the low minor element content, are similar to hydrothermal deposits associated with volcanic activity or to diagenetic manganese enrichments in hemipelagic regions in sediments with relatively high organic-C contents. Diagenetic shallow water deposits are geochemical similar to the Wahrah Formation enrichment also. Regional geological considerations, mineralogical, sedimentological and REE-patterns evidences in the Wahrah Formation are, however in conflict with these models. Therefore, we propose a alternative manganese transport and accumulation model. “Continentally” derived manganese is introduced to the sea in suspended and/or dissolved form and deposited on the continental margin and -slope. Upward migrating pore fluids, diagenetically enriched in manganese, are released to the water column and horizontally transported through the Oxygen-minimum zone towards the open basin. During selective element scavenging onto different sinking particles and the formation of manganese-rich microparticles, element separation takes place. Sedimentary features indicate that manganese microparticles, precipitated in the water column and the sea water sediment interface, are mechanically enriched to fine laminae and thicker layers. Hydrodynamically controlled separation processes during transport of clay minerals, manganese-rich microparticles and biogenic particles (main element carrier phases) explain the geochemical composition. Geochemical differences and similarities of nodular and layered ore types are attributed to later minor element redistributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreyev, S.N. and Kulikov, A.N. 1987. Sedimentation rates in areas of manganese-nodule formation in the Pacific. In: Transactions (Doklady) of the USSR, Academy of sciences: earth science section, 297 (6): 75–77.

    Google Scholar 

  • Baturin, G.N. 1988. The Geochemistry of Manganese nodules in the Ocean. D. Reidel Publishing Company, 243 pp.

    Google Scholar 

  • Béchennec, F. 1987. Géologie des nappes Hawasina dans les parties orientale et centrale des montangnes de’Oman. Thése University Tierre et Marie Currie, Paris. Documents du BRGM 127, 474 pp.

    Google Scholar 

  • Béchennec, F. Le, Métour, J., Rabu, D., Villey, M. and Beurrier, M. 1988. The Hawasina Basin: a fragment of a starved passive continental margin, thrust over the Arabian Platform during obduction of the Semail Ophiolite., Tectonophysics, 151 (1–4): 223–243.

    Article  Google Scholar 

  • Beurrier, M. 1988. Geologie de la nappe ophiolitque de Samail dans les parties orientale et centrale des montagnes d’Oman. Thése University Tierre et Marie Currie, Paris. Documents du BRGM 128, 412 pp.

    Google Scholar 

  • Bender, M.L., 1971. Does upward diffusion supply the excess manganese in pelagic sediments.. Journal of Geophysical Research, 76: 4214–4215.

    Article  Google Scholar 

  • Bender, M.L., Klinkhammer, G.P. and Spencer, D.W., 1977. Manganese in sea water and the marine manganese balance., Deep Sea Research, 24: 799–812.

    Article  Google Scholar 

  • Bonatti, E., Fischer, D.E., Joensuu, V. and Rydell, M.S., 1971. Postdepositional mobility of some transition elements, phosphorous, uranium and thorium in deep sea sediments., Geochimica et Cosmochimica Acta, 35: 189–201.

    Article  Google Scholar 

  • Bonatti, E., Kraemer, T. and Rydell, H., 1972. Classification and genesis of submarine iron-manganese deposits. In: Horn. D.R. (Ed). Ferromanganese Deposits on the Pacific Floor. National Science Foundation, Washington D. C., pp. 149–166.

    Google Scholar 

  • Boyle, E.A., Sclater, E.R. and Edmund, J.M., 1977. The distribution of dissolved copper in the Pacific., Earth and Planetary Science Letters. 37: 38–54.

    Article  Google Scholar 

  • De Weyer, P., Bourdillon des Grissac, Ch. and Béchennec, F.. 1990. Permian to Cretaceous radiolarian biostratigraphic data from the Hawasina complex, Oman Mountains. In: Robertson, A.H.F., Searle, M.P., Ries, A.C.. (Eds). The Geology and tectonics of the Oman region. The Geological Society, Special Publication. 49: 225–238.

    Google Scholar 

  • Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conrad, R. and Pisas, N., 1984. Ferromanganese nodules from MANOP sites H.S. and R - Control of mineralogical and geochemical composition by multiple accretionary processes.. Geochimica et Cosmochimica Acta, 48: 931–949.

    Article  Google Scholar 

  • Elderfield, H.. 1976. Manganese fluxes to the oceans., Marine Chemistry, 4: 103–132.

    Article  Google Scholar 

  • Elderfield, H., Hakesworth, C.J., Greaves, M.J., 1981. Rare earth element geochemistry of the oceanic ferromanganese nodules and associated sediments., Geochimica et Cosmochimica Acta, 45: 531–528.

    Google Scholar 

  • Glasby, G.P., Gwozdz, R., Kunzendorf, H., Friedrich, G.T., Thijssen, T.. 1987. The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific.. Lithos. 20: 97–113.

    Article  Google Scholar 

  • Glennie, K.W., Boeuf, M.G.A., Hughes Clarke, M.W., Moody Stuart, M., Pilaar, W.F.H. and Reinhardt, B.M.. 1974. Geology of Oman Mountains. Verhandelingen van het Koninklijk Nederlands geologisch mijnbouwkundig Genootschap. 31. 423 pp.

    Google Scholar 

  • Halbach, P., Friederich, G. and Stockelberg, U.. (Eds) 1988. The manganese nodule belt of the Pacific Ocean. Enke, Stuttgart, 254 pp.

    Google Scholar 

  • Halbach, P. and Puteanus, D. 1988. Geochemical trends of different genetic types of nodules and crusts. In: Halbach, P., Friederich, G. and Stockelberg, U. (Editors) The manganese nodule belt of the Pacific Ocean. Enke. Stuttgart. 61–67.

    Google Scholar 

  • Halbach, P., Rehm, E. and Marching, V.. 1979. Distribution of Si. Mn. Fe, Ni. Cu, Co, Zn. Pb. Mg and Cu in grain-size fractions of sediment samples from a manganese nodule field in the Central Pacific Ocean.. Marine Geology. 29: 237–253.

    Google Scholar 

  • Hartmann, M., 1979. Evidence for early diagenetic mobilization of trace elements from discolorations of pelagic sediments., Chemical Geology, 26: 277–293.

    Article  Google Scholar 

  • Hayes, S.P., 1988. Benthic currents in the deep ocean. In: Halbach, P., Friederich, G. and Stockelberg, U. (Eds) The manganese nodule belt of the Pacific Ocean, Enke, Stuttgart, pp. 90–102.

    Google Scholar 

  • Heath, G.R. and Dymond, J., 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep and central Basis, North-West Nazca Plate., Geological Society of America Bulletin, 88: 723–733.

    Article  Google Scholar 

  • Iijima A. and Utada, M., 1983. Recent developments in sedimentology of siliceous deposits in Japan. In: Iijima A., Hein, J.R., Siever, P., (Eds), Siliceous deposits in the Pacific region. Developments in Sedimentology, 36, Elsevier, Amsterdam, pp. 45–64.

    Chapter  Google Scholar 

  • Kickmaier, W. and Peters, Tj., 1990. Manganese occurrences in the Al Hammah Range- Wahrah Formation. In: Robertson, A.H.F., Searle, M.P., Ries, A.C., (Eds). The Geology and tectonics of the Oman region., The Geological Society, Special Publication, 49: 239–249.

    Google Scholar 

  • Klinkhammer, G.P. and Bender, L.M., 1980. Distribution of manganese in the Pacific Ocean., Earth and Planetary Science Letters, 46: 361–384.

    Article  Google Scholar 

  • Krauskopf, K.B., 1957. Separation of manganese from iron in sedimentary processes., Geochimica et Cosmochimica Acta, 12: 61–84.

    Article  Google Scholar 

  • Martin, J.H. and Knauer, G.A., 1984. VERTEX: manganese transport through oxygen minima., Earth and Planetary Science Letters, 67: 35–47.

    Article  Google Scholar 

  • Matsumoto, R. and Iijima, A., 1983. Chemical sedimentology of some Permo-Jurassic and Tertiary bedded cherts in central Honshu, Japan. In: Iijima A., Hein, J.R., Siever, P., (Eds), Siliceous deposits in the Pacific region. Developments in Sedimentology, 36: 175–191, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Müller, P.J. and Mangini, A., 1980. Organic C-carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230 Th and 231Pa., Earth and Planetary Science Letters, 51: 94–114.

    Article  Google Scholar 

  • Müller, P.J., Hartmann, M. and Suess, E., 1988. In: Halbach, P., Friederich, G. and Stockelberg, U. (Eds) The manganese nodule belt of the Pacific Ocean, pp. 71–90, Enke, Stuttgart.

    Google Scholar 

  • Nisbet, E.G. and Price, J., 1974. Turbidite derived cherts. In: Hsü, K.J. and Jenkyns, H.C. (Eds) Pelagic Sediments: on Land and under Sea. Special Publication of the International Association of Sedimentologists, 1: 351–366.

    Google Scholar 

  • Piper, D.Z., 1974. Rare earth elements in the sedimentary cycle: A summary., Chemical Geology, 14: 285–304.

    Article  Google Scholar 

  • Roy, S., 1981. Manganese Deposits, Academic Press, London, 456 p.

    Google Scholar 

  • Sunby, B., Silverberg and Chesslet, R. 1981. Pathways of manganese in the open esdurine system. Geochimica et Cosmochimica Acta, 45: 239–307.

    Google Scholar 

  • Toth, J.R., 1980. Deposition of submarine crusts rich in manganese and iron., Geological Society of America Bulletin, I (91): 44–54.

    Article  Google Scholar 

  • Turekian, K. K. and Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth’s crust., Geological Society of America, Bulletin, 72: 175–192.

    Article  Google Scholar 

  • Varanavas, S. P. and Pungnos, A. G., 1983. The use of trace metals in elucidating the genesis of some Greek and Cyprus manganese and ferromanganese deposits. In: Augustihis, S.S. (Ed). The significance of trace elements solving petrogenetic problems and controversies. Theophrastus publications, Athenes, pp. 819–860.

    Google Scholar 

  • Yamamoto, K., 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes., Sedimentary Geology, 52: 65–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kickmaier, W., Peters, T. (1991). Chert-Hosted Manganese Deposits in the Wahrah Formation: A Depositional Model. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics