Skip to main content

Sulfur Isotopic Profile Through the Troodos Ophiolite, Cyprus: Preliminary Results and Implications

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

  • 644 Accesses

Abstract

The sulfide mineralogy, sulfur contents, and sulfur isotopic compositions were determined for a section through the Troodos Ophiolite, Cyprus, as represented by Cyprus Crustal Study Project drillholes Cy-2a and Cy-4. The composite section includes volcanics altered at low temperature, a subsurface sulfide mineralization, hydrothermally altered sheeted dikes, and underlying gabbros. The volcanics average 400 ppm S, and contain sulfide with δ34S = +4%, consistent with a possible primary arc-like sulfur source. The sulfide mineralization in CY-2a ranges up to 45 wt% S, and pyrites have uniform δ345 values of 6.4 ± 0.4%. The hydrothermally altered rocks in the underlying feeder zone contain an average of 3.5% S, and pyrites have δ345 values averaging +5.9 ± 0.9%. The δ34S values of the mineralization and underlying rocks are consistent with mixtures of 15-35% Cretaceous seawater sulfur +17%) plus sulfur remobilized from elsewhere in the ophiolite. Gabbros of hole Cy-4 contain 10-1270 ppm S, having both gained and lost S through hydrothermal alteration.The δ34S values of sulfide generally range from +0.2 to +7.7%. The lower values are consistent with primary MORB-like sulfur, and the higher values reflect local incorporation of seawater-derived sulfur during hydrothermal alteration, and the possible presence of arc-like primary sulfur (+4 to +5%).

Overall, processes affecting sulfur in the Troodos ophiolite are generally similar to those occurring in oceanic crust. Theδ34Svalues for the Troodos section average around +5% and are higher than those for oceanic crust, however, which average around 0 to +1L. The δ34S-enrichment of ophiolitic crust is attributed to incorporation of greater amounts of seawater-derived S in the ophiolite, plus the possibility of a component of δ34S-enriched arc-like primary sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamides, N.G., 1987. Diverse modes of occurrence of Cyprus sulphide deposits and comparison with recent analogues. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Editors), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a. Geol. Surv. Canada paper 85–29: 153–168.

    Google Scholar 

  • Alt, J.C. and W.C. Shanks, 1989. Sources and cycling of sulfur in subduction zones: The Mariana island arc and back arc trough, Geol. Soc. Am. Ann. Mtg. Abstracts with programs (abstract).

    Google Scholar 

  • Alt, J.C., T.F. Anderson, and L. Bonnell, 1989. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B., Geochim. Cosmochim. Acta, 53: 1011–1023.

    Article  Google Scholar 

  • Alt, J.C. and T.F. Anderson, 1990. The mineralogy and isotopic composition of sulfur in Layer 3 gabbros from the Indian Ocean, ODP Hole 735B. In: P.T. Robinson, R. VonHerzen, et al., Proc. Ocean Drilling Program, Scientific Results, 118: in press.

    Google Scholar 

  • Andrews A.J., 1979. On the effect of low-temperature seawater-basalt interaction on the distribution of sulfur in oceanic crust, Layer 2., Earth Planet. Sci. Lett., 46: 68–80.

    Article  Google Scholar 

  • Arnold M. and Sheppard S.M.F., 1981. East Pacific Rise at latitude 21°N: Isotopic composition and origin of the hydrothermal sulphur., Earth Planet. Sci. Lett., 56: 148–156.

    Article  Google Scholar 

  • Auclair, F., and J.N. Ludden, 1987. Cyclic geochemical variation in the Troodos pillow lavas: evidence from the Cy-2a drill hole. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a. Geol. Surv. Canada paper 85–29: 221–236.

    Google Scholar 

  • Baragar, W.R., M.B. Lambert, N. Baglow, and I. Gibson, 1987. Sheeted dikes of the Troodos ophiolite. In: H.C. Halls and W.F. Fahrig (Eds), Mafic Dyke swarms., Geol. Assoc. Can. Spec. Paper, 34: 257–272.

    Google Scholar 

  • Barriga, F.J.A.S, J. Munha, W.S. Fyfe and N.J. Vibetti, 1985. Extreme hydrothermal alteration in the intrusive layers of the Troodos ophiolite (Cyprus)., EOS Trans AGU, 66: 1128 (abstract).

    Google Scholar 

  • Bednarz, U., G. Sunkel and H.-U. Schmincke, 1987a. The basaltic andesite-andesite and the andesite-dacite series from the ICRDG drill holes CY-2 and CY-2a. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a., Geol. Surv. Canada paper 85–29: 183–204.

    Google Scholar 

  • Bluth, G. and Ohmoto H. (1988) Sulfur isotope study of sulfide-sulfate chimneys on the East Pacific Rise, 11–13°N latitude., Can. Mineral., 26: 505–516.

    Google Scholar 

  • Cann, J.R., P.J. Oakley, H.G. Richards, and C.J. Richardson, 1987. Geochemistry of hydro-thermally altered rocks from Cyprus Drill Holes Cy-2 and Cy-2a compared with other Cyprus Stockworks. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a., Geol. Surv. Canada paper, 85–29: 87–102.

    Google Scholar 

  • Carroll, M.R. and M.J. Rutherford, 1985. Sulfide and sulfate saturation in hydrous silicate melts, Proc. 15th Lunar Planet. Sci. Conf., part 2: C601–C612.

    Google Scholar 

  • Chaussidon M.F., Albarede F. and Sheppard S.M.F., 1987. Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds., Nature, 330: 242–244.

    Article  Google Scholar 

  • Clark, L.A., 1971. Volcanogenic ores: comparison of cupriferous pyrite deposits of Cyprus and Japanese Kuroko deposits., Soc. Mining Geol. Japan Spec. Issue, 3: 206–215.

    Google Scholar 

  • Claypool, G.E., W.T. Holser, I.R. Kaplan, H. Sakai, and I. Zak, 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation., Chem. Geol., 28: 199–260.

    Article  Google Scholar 

  • Constantinou, G. and G.J.S Govett, 1973. Geology, geochemistry and genesis of Cyprus sulfide deposits., Econ. Geol., 68: 843–858.

    Article  Google Scholar 

  • Edmond J.M., Measures C. Mcduff R.E., Chan L.H., Collier R., Grant, B., Gordon, L.I. and Corliss J.B., 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data., Earth. Planet. Sci. Lett., 46: 1–18.

    Article  Google Scholar 

  • Field C.W., Sakai H. and Ueda A., 1984. Isotopic constraints on the origin of sulfur in oceanic rocks. In: A. Wauschkuhn, C. Kluth and R.A. Zimmermann (Eds), Syngenesis and epigenesis in the formation of mineral deposits: pp. 573–589.

    Chapter  Google Scholar 

  • Garcia, M.O., N.W.K. Liu and D.W. Muenow, 1979. Volatiles in submarine volcanic rocks from the Mariana Island arc and trough., Geochim Cosmochim Acta., 43: 305–312.

    Article  Google Scholar 

  • Hamlyn, P.R., R.R. Keays, W.E. Cameron, A.J. Crawford, and H.W. Waldron, 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas., Geochim. Cosmochim. Acta, 49: 1797–1811.

    Article  Google Scholar 

  • Harmon, R.S., J. Hoefs, K.H. Wedepohl, 1987. Stable isotope relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W. Germany., Contrib. Mineral. Petrol., 95: 350–369.

    Google Scholar 

  • Haughton D.R., Roeder P. and Skinner B.J., 1974. Solubility of sulfur in mafic magmas., Econ. Geol., 69: 451–467.

    Article  Google Scholar 

  • Herzig, P.M.and G.H. Friedrich, 1987. Sulfide mineralization, hydrothermal alteration and chemistry in the drill hole CY-2a, Agrokipia, Cyprus. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a., Geol. Surv. Canada paper, 85–29: 103–138.

    Google Scholar 

  • Hubberten H.W., 1983. Sulfur content and sulfur isotopes of basalts from the Costa Rica Rift (Hole 504B, DSDP Legs 69 and 70). In: J. Honnorez, R.P. VonHerzen et al., Init. Repts. DSDP, Vol. 69: 629–635.

    Google Scholar 

  • Hutchinson, R.W. and D.L. Searle, 1971. Stratabound pyrite deposits in Cyprus and relations to other sulfide ores., Soc. Mining Geol. Japan Spec Issue, 3: 198–205.

    Google Scholar 

  • Jamieson, H.E. and J.W. Lydon, 1987. Geochemistry of a fossil ore solution aquifer: chemical exchange between rock and hydrothermal fluid recorded in the lower portio of research drill hole CY-2a, Agrokipia, Cyprus. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a. Geol. Surv. Canada paper, 85–29: 139–152.

    Google Scholar 

  • Janecky, D.S. and W.C. Shanks III, 1988. Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones., Can Mineral., 26: 805–825.

    Google Scholar 

  • Johnson, A.E., 1972. Origin of Cyprus pyrite deposits. 24th IGC: pp. 291–298.

    Google Scholar 

  • Ohmoto H. and Rye R.O., 1979. Isotopes of sulfur and carbon. In: H.L. Barnes (Ed), Geochemistry of hydrothermal ore deposits: pp. 509–567.

    Google Scholar 

  • Rautenschlein, M., G.A. Genner, J. Hertogen, A.W. Hoffmann, R. Kerrich, H.U. Schminke and W.M. White, 1985. Isotopic and trace element composition of volcanic glass from the Akaki canyon, Cyprus: Implications for the origin of the Troodos Ophiolite., Earth Planet Sci Lett., 75: 369–383.

    Article  Google Scholar 

  • Rees C.E., Jenkins W.J. and Monster J., 1978. The sulphur isotopic composition of ocean water sulphate., Geochim. Cosmochim. Acta, 42: 377–381.

    Article  Google Scholar 

  • Robinson, P.T., W.G. Melson, T. O’Hearn and H.U. Schmincke, 1983. Volcanic glass compositions of the Troodos Ophiolite, Cyprus., Geology, 11: 400–404.

    Article  Google Scholar 

  • Sakai H., DesMarais D.J., Ueda A. and Moore, J.G., 1984. Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts., Geochim. Cosmochim. Acta, 48: 2433–2441.

    Article  Google Scholar 

  • Smith, G.C. and F.J. Vine, 1987. Seismic veolocities in basalts from CCSP drill holes CY-2 and CY-2a at Agrokipia Mines, Cyprus. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a., Geol. Surv. Canada paper, 85–29: 295–306.

    Google Scholar 

  • Styrt M.M, Brackmann A.J., Holland H.D., Clark B.C., Pisutha-Arnold V.M., Eldridge C.S. and Ohmoto H., 1981. The mineralogy and isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude., Earth Planet. Sci. Lett., 53: 382–390.

    Article  Google Scholar 

  • Sunkel, G., U. Bednarz and H.-U. Schmincke, 1987. The basaltic andesite-andesite and andesite-dacite series from the ICRDG drill holes Cy-2 and Cy-2a. II. Alteration. In: P.T. Robinson, I.L. Gibson, and A. Panayiotou (Eds), Cyprus Crustal Study Project: Initial Report, Holes Cy-2 and 2a. Geol. Surv. Canada paper, 85–29: 205–220.

    Google Scholar 

  • Thy, P., P. Schiffman and E.M. Moores, 1989. Igneous mineral stratigraphy and chemistry of the Cyprus Crustal Study Project drill core in the plutonic sequences of the Troodos ophiolite. In: I.L Gibson, J. Malpas, P.T. Robinson and C. Xenophontos (Eds), Cyprus Crustal Study Project: Initial Report, Hole CY-4., Geol. Surv. Canada paper, 88–9: 147–186.

    Google Scholar 

  • Ueda, A. and H. Sakai, 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc., Geochim. Cosmochim. Acta, 48: 1837–1848.

    Article  Google Scholar 

  • Woodhead J.D., Harmon R.S. and Fraser D.G., 1987. O, S, Sr and Pb isotope variations in volcanic rocks from the Northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs., Earth Planet. Sci. Lett., 83: 39–52.

    Article  Google Scholar 

  • Woodruff L.G. and Shanks W.C. III, 1988. Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction., J. Geophys. Res., 93: 4562–4572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Alt, J.C. (1991). Sulfur Isotopic Profile Through the Troodos Ophiolite, Cyprus: Preliminary Results and Implications. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics