Skip to main content

Hydrothermal Metamorphism in Oceanic Crust from the Coast Range Ophiolite of California: Fluid-Rock Interaction in a Rifted Island Arc

  • Conference paper

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

Metamorphic-mineral parageneses and stable-isotope systematics in remnants of the southern portion of the California Coast Range ophiolite differ from those described in modern oceanic crust and many other ophiolites. Detailed studies of the Del Puerto and Point Sal ophiolite remnants reveal a style of submarine hydrothermal metamorphism characterized by (1) development within the extrusive section of a continuous low-P/T metamorphic facies series that includes zeolite-, prehnite-pumpellyite-, and greenschist-facies mineral assemblages; (2) pervasive alteration of the extrusive rocks; (3) absence of massive sulfide deposits; (4) large 18O enrichments in metavolcanic rocks (up to 20% [SMOW] in the Del Puerto remnant); and (5) absence of corresponding 18O depletions in associated plutonic rocks.

D/H whole-rock and mineral-separate data from the Del Puerto ophiolite remnant confirm that metamorphism occurred in the presence of a seawater-derived hydrothermal fluid. Oxygen-isotope analyses of primary minerals in Del Puerto remnant plutonic rocks indicate limited open-system behavior characterized by 18O-enrichment, relative to primary magmatic values, in plagioclase. In the Coast Range ophiolite remnants, fluid inflow through a large volume of unidentified or missing rocks (possibly sedimentary cover, including tuffaceous cherts), must have enriched seawater in 18O. Because the Coast Range ophiolite remnants did not form in a strongly extensional tectonic environment, major listric normal fault systems did not develop, and thus seawater penetration into the lower crust must have been limited. Consequently, isotopically shifted seawater produced strong 18O enrichments in volcanic roof rocks during upflow, but did not significantly interact with the underlying plutonites.

The absence of massive sulfide deposits as well as the pervasive style of hydrothermal metamorphism and isotopic exchange in Coast Range ophiolite extrusive rocks implies that fluid flow was not strongly fracture controlled. The continuity of metamorphic zones within the extrusive section is more closely analogous to that characteristic of continental geothermal systems or contact metamorphic aureoles as opposed to hydrothermal metamorphism in open ocean spreading centers. Exposure of sediment-capped, volcanic roof rocks to cooling plutons for relatively long periods of time allowed for more complete recrystallization and isotopic exchange, and development of zeolite-and prehnite-pumpellyite-facies assemblages, features that are typically absent from modern ocean crust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrinier, P., Javoy, M. and Girardeau, J., 1988. Hydrothermal activity in a peculiar oceanic ridge: oxygen and hydrogen isotope evidence in the Xigaze Ophiolite (Tibet, China)., Chemical Geology, 71: 313–335.

    Article  Google Scholar 

  • Alabaster, T. and Pearce, J.A., 1985. The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman Ophiolite., Economic Geology, 80: 1–16.

    Article  Google Scholar 

  • Alt, J.C. and Honnorez, J., 1984. Alteration of the upper oceanic crust, DSDP site 417: mineralogy and chemistry., Contributions to Mineralogy and Petrology, 87: 149–169.

    Article  Google Scholar 

  • Alt, J.C., Honnorez, J., Laverne, C. and Emmermann, R., 1986a., Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of Geophysical Research, 91: 10,309–10,335.

    Article  Google Scholar 

  • Alt, J.C., Muehlenbachs, K. and Honnorez, J., 1986b. An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B., Earth and Planetary Science Letters, 80: 217–229.

    Article  Google Scholar 

  • Bailey, E.H., Blake, M.C. and Jones, D.L., 1970. On-land Mesozoic oceanic crust in California Coast Ranges., U.S. Geological Survey Prof. Paper, 700-C: C70–80.

    Google Scholar 

  • Bailey, E.H. and Jones, D.L., 1973. Metamorphic facies indicated by vein minerals in basal beds of the Great Valley sequence, northern California. Journal of Research of the U.S. Geological Survey, 1: 383–385.

    Google Scholar 

  • Bettison, L.A. and Schiffman, P., 1988. Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California., American Mineralogist, 73: 62–76.

    Google Scholar 

  • Bird, D., Schiffman, P., Elders, W.A., Williams, A.E. and McDowell, S.D., 1984. Calc-silicate mineralization in active geothermal systems., Economic Geology, 79: 671–695.

    Article  Google Scholar 

  • Cathles, L.M., 1981. An analysis of the hydrothermal system responsible for the massive sulfide deposition in the Hokuroku basin of Japan., Economic Geology Monograph, 5: 439–487.

    Google Scholar 

  • Cocker, J.D., Griffin, B.J. and Muehlenbachs, K., 1982. Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite., Earth and Planetary Science Letters, 61: 112–122.

    Article  Google Scholar 

  • Coleman, R.G., 1984. Preaccretion tectonics and metamorphism of ophiolites., Ofioliti, 9: 205–222.

    Google Scholar 

  • Constantinou, G. and Govett, G.J.S., 1973. Geology, geochemistry, and genesis of Cyprus sulfide deposits., Economic Geology, 68: 843–858.

    Article  Google Scholar 

  • Davis, E.E., Goodfellow, W.D., Bornhold, B.D., Adshead, J., Blaise, B., Villinger, H. and Le Cheminant, G.M. 1987. Massive sulfide in a sedimented rift valley, northern Juan de fuca Ridge., Earth and Planetary Science. Letters, 86: 49–61.

    Article  Google Scholar 

  • Dickinson, W.R., Ojakangas, R.W. and Stewart, R.J., 1969. Burial metamorphism of the Late Mesozoic Great Valley Sequence, Cache Creek, California., Bulletin Geological Society of America, 80: 519–526.

    Article  Google Scholar 

  • Einsele, G., et al., 1980. Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity., Nature, 283: 441–445.

    Article  Google Scholar 

  • Embley, R.W., Jonasson, E.R., Perfit, M.R., Franklin, J.M., Tivey, M.A., Malahoff, A., Smith, M.F. and Francis. T.J.G., 1988. Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge: sulfide mounds, stockwork zone, and differentiated lavas., Canadian Mineralogist, 26: 517–539.

    Google Scholar 

  • Emerson, N.L., 1979. Lower Tithonian volcaniclastic rocks above the Llanada ophiolite, California: M. Sc. Thesis, Univ. of California, Santa Barbara, 65 pp.

    Google Scholar 

  • Evarts, R.C., 1977. The geology and petrology of the Del Puerto ophiolite, Diablo Range, central California Coast Ranges. In: R.G. Coleman and W.P. Irwin (Eds), North American Ophiolites. Oregon Dept. Geology and Mineral Industries Bull., 95: 121–140.

    Google Scholar 

  • Evarts, R.C., 1978, The Del Puerto ophiolite: Structural and petrologic evolution. Ph.D. dissertation, Stanford University, 409 pp.

    Google Scholar 

  • Evarts, R.C. and Schiffman, P., 1983. Submarine hydrothermal metamorphism of the Del Puerto ophiolite. American Journal of Science, 283: 289–340.

    Article  Google Scholar 

  • Fouillac, A.M. and Javoy, M., 1988. Oxygen and hydrogen isotopes in the volcano-sedimentary complex of Huelva (Iberian Pyrite Belt): example of water circulation through a volcano-sedimentary sequence., Earth and Planetary Science Letters, 87: 473–484.

    Article  Google Scholar 

  • Gass, I.G. and Smewing, J.D., 1973. Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus., Nature, 242: 26–29.

    Article  Google Scholar 

  • Gillis, K.M. and Robinson, P.T., 1985. Low-temperature alteration of the extrusive sequence, Troodos Ophiolite, Cyprus., Canadian Mineralogist, 23: 431–441.

    Google Scholar 

  • Gillis, K.M. and Robinson, P.T., 1988. Distribution of alteration zones in the upper oceanic crust., Geology, 16: 262–266.

    Article  Google Scholar 

  • Gregory, R.T., Criss, R.E. and Taylor, H.P., Jr., 1989. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations., Chemical Geology, 75: 1–42.

    Article  Google Scholar 

  • Gregory, R.T. and Taylor, H.P., Jr., 1984. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research, 86: 2737–2755.

    Article  Google Scholar 

  • Grove, T.L. and Bence, A.E., 1977. Experimental study of pyroxene-liquid interaction in quartz-normative basalt 15597. Proceedings of the Lunar Science Conference, 8: 1549–1579.

    Google Scholar 

  • Grove, T.L. and Bryan, W.B., 1983. Fractionation of pyroxene-phyric MORB at low pressure: an experimental study., Contributions to Mineralogy and Petrology, 84: 293–309.

    Article  Google Scholar 

  • Harper, G.D., 1985. Tectonics of slow-spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition., Tectonics, 4: 395–405.

    Article  Google Scholar 

  • Harper, G.D., Bowman, J.R. and Kuhns, R., 1988. A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine Ophiolite, California-Oregon., Journal of Geophysical Research, 93: 4625–4656.

    Article  Google Scholar 

  • Haymon, R.M. and Macdonald, K.C., 1985. The geology of deep-sea hot springs., American Scientist. 73: 441–449.

    Google Scholar 

  • Heaton, T.H.E. and Sheppard, S.M.F., 1977. Hydrogen and oxygen isotope evidence for seawater-hydrothermal alteration and ore deposition, Troodos complex, Cyprus., Geological Society of London Special Publication 7: 42–57.

    Article  Google Scholar 

  • Hopson, C.A. and Frano, C.J., 1977. Igneous history of the Point Sal ophiolite, southern California. In: R.G. Coleman and W.P. Irwin (Eds), North American Ophiolites., Oregon Dept. Geology and Mineral Industries Bull., 95: 161–183.

    Google Scholar 

  • Hopson, C.A., Frano, C.J., Pessagno, E.A., Jr. and Mattinson, J.M., 1975. Preliminary report and geologic guide to the Jurassic ophiolite near Point Sal, southern California coast. Geological Society of America 71st Annual Meeting Cordilleran Section, Field Trip Guide, 5, 36 pp.

    Google Scholar 

  • Hopson, C.A., Mattinson, J.M. and Pessagno, E.A., 1981. Coast Range Ophiolite, western California. In: W.G. Ernst (Ed), The Geotectonic Development of California. Prentice-Hall, Englewood Cliffs, pp. 418–510.

    Google Scholar 

  • Ingersoll, R.V., 1978. Petrofacies and petrologic evolution of the late Cretaceous fore-arc basin, northern and central California., Journal of Geology, 86: 335–352.

    Article  Google Scholar 

  • Ishizuka, H., 1985. Prograde metamorphism of the Horokanai Ophiolite in the Kamuikotan zone, Hokkaido, Japan., Journal of Petrology, 26: 391–417.

    Article  Google Scholar 

  • Ito, E. and Clayton, R.N., 1983. Submarine metamorphism of gabbros from the Mid-Cayman Rise: an oxygen isotope study., Geochimica et Cosmochimica Acta, 47: 535–546.

    Article  Google Scholar 

  • Knauth, L.P. and Epstein, S., 1975. Hydrogen and oxygen isotope ratios in silica from the JOIDES Deep Sea Drilling Project., Earth and Planetary Science Letters, 25: 1–10.

    Article  Google Scholar 

  • Koski, R.A., 1987. Sulfide deposits on the sea floor: geological model and resource perspectives based on studies in ophiolite sequences. In: P.G. Teleki et al., (Eds), Marine Minerals, Advances in Research and Resource Assessment. D Reidel, Dordrecht, pp. 301–306.

    Google Scholar 

  • Lanphere, M.A., 1971. Age of the Mesozoic oceanic crust in the California Coast Ranges., Bulletin of the Geological Society of America. 82: 3209–3212.

    Article  Google Scholar 

  • Levi, S. and Riddihough, R., 1986. Why are marine magnetic anomalies suppressed over sedimented spreading centers?, Geology, 14: 651–654.

    Article  Google Scholar 

  • Liou, J.G., Maruyama, S. and Cho, M., 1987. Very low-grade metamorphism of volcanic and volcaniclastic rocks - mineral assemblages and mineral facies. In: M. Frey (Ed), Low Temperature Metamorphism. Blackie and Sons, Glasgow, pp. 59–113.

    Google Scholar 

  • Lippard, S.J., Shelton, A.W. and Gass, LG., 1986. The Ophiolite of northern Oman., Geological Society of London Memoir, 11, 178 pp.

    Google Scholar 

  • Magaritz, M. and Taylor, H.P. Jr., 1976. Oxygen, hydrogen and carbon isotope studies of the Franciscan formation, Coast Ranges, California., Geochimica et Cosmochimica Acta, 40: 215–234.

    Article  Google Scholar 

  • Mason, R., 1978. Petrology of the metamorphic rocks. George Allen & Unwin, London.

    Google Scholar 

  • Merlivat, L., Pineau, F. and Javoy, M., 1987. Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic and gas concentrations., Earth and Planetary Science Letters, 84; 100–108.

    Article  Google Scholar 

  • Moores, E.M., 1982. Origin and emplacement of ophiolites., Reviews of Geophysics and Space Physics, 20: 735–760.

    Article  Google Scholar 

  • Mottl, M.J., 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges., Geological Society of America Bulletin, 94: 161–180.

    Article  Google Scholar 

  • Nielsen, R.L. and Dungan, M.A., 1983. Low pressure mineral-melt equilibria in natural anhy-drous mafic systems., Contributions to Mineralogy and Petrology 84: 310–326.

    Article  Google Scholar 

  • Ondin, E. and Constantinou, G., 1984. Black smoker chimney fragments in Cyprus sulfide deposits., Nature, 308: 349–353.

    Article  Google Scholar 

  • Pearce, J.A. and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis., Earth and Planetary Science Letters, 19: 290–300.

    Article  Google Scholar 

  • Pflumio, C., 1988. Histoire volcanique et hydrothermal du massif de Salahi: implications sur l’origine et l’evolution de l’ophiolite de Semail., Ph.D. dissertation, Ecole Nat. Sup. des Mines de Paris, 243 p. (in French).

    Google Scholar 

  • Rancon, J.Ph., 1985. Hydrothermal history of Piton Des Neiges Volcano (Reunion Island, Indian Ocean)., Journal of Volcanology and Geothermal Research, 26: 297–315.

    Article  Google Scholar 

  • Rautenschlein, M., Jenner, G.A., Hertogen, J., Hofmann, A.W., Kerrich, R., Schmincke, H.-U. and White, W.M., 1985. Isotopic and trace element composition of volcanic glasses from the Akaki Canyon, Cyprus: implications for the origin of the Troodos ophiolite., Earth and Planetary Science Letters, 75: 369–383.

    Article  Google Scholar 

  • Raymon, L.A., 1973. Tesla-Ortigalita fault, Coast Range thrust fault, and Franciscan melange, northern Diablo Range, California., Geological Society of America Bulletin, 84: 3547–3562.

    Article  Google Scholar 

  • Richards, H.G., Cann, J.R., and Jensenius, J., 1989. Mineralogical zonation and metasomatism of the alteration pipes of Cyprus sulfide deposits., Economic Geology, 84: 91–115.

    Article  Google Scholar 

  • Richardson, C.J., Cann, J.R., Richards, H.G. and Cowan, J.G., 1987. Metal depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus., Earth and Planetary Science Letters, 84: 243–253.

    Article  Google Scholar 

  • Robertson, A.H.F., 1989. Paleogeography and tectonic setting of the Jurassic Coast Range ophiolite, central California: evidence from the extrusive rocks and the volcaniclastic sediment cover., Marine and Petroleum Geology, 6: 194–220.

    Article  Google Scholar 

  • Robinson, P.T., Melson, W.G., O’Hearn, T. and Schmincke, H.-U., 1983. Volcanic glass compositions of the Troodos ophiolite, Cyprus., Geology, 11: 400–404.

    Article  Google Scholar 

  • Schiffman, P., Bettison, L. and Williams, A., 1986. Hydrothermal metamorphism of the Point Sal remnant, California Coast Range ophiolite., Proceedings of the Fifth International Symposium on Water-Rock Interactions, 489–492.

    Google Scholar 

  • Schiffman, P., Bettison, L.A. and Smith, B.M., 1990. Mineralogy and geochemistry of epidosites from the Solea graben, Troodos ophiolite, Cyprus. Troodos ‘87 Symposium Proceedings.

    Google Scholar 

  • Schiffman, P. and Smith, B.M., 1988. Petrology and oxygen-isotope geochemistry of a fossil seawater hydrothermal system within the Solea graben, northern Troodos Ophiolite, Cyprus., Journal of Geophysical Research, 93: 4612–4624.

    Article  Google Scholar 

  • Schiffman, P., Williams, A.E. and Evarts, R.C., 1984. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California., Earth and Planetary Science Letters, 70: 207–220.

    Article  Google Scholar 

  • Seyfried, W.E., Jr., 1987. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges., Annual Reviews of Earth and Planetary Sciences, 15: 317–335.

    Article  Google Scholar 

  • Shanks, W.C. III and Seyfried, W.E. Jr., 1987. Stable isotope studies of vent fluids and chimney minerals, Southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction., Journal of Geophysical Research, 92: 11387–11399.

    Article  Google Scholar 

  • Sharp, W.D. and Evarts, R.C., 1982. New constraints on the environment of formation of the Coast Range ophiolite at Del Puerto Canyon, California., Geological Society of America, Abstract with Programs, 11: 127.

    Google Scholar 

  • Shervais, J.W., 1990. Island arc and ocean crust ophiolites: contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges. Troodos ‘87 Symposium.

    Google Scholar 

  • Shervais, J.W. and Kimbrough, D.L., 1985. Geochemical evidence for the origin of the Coast Range ophiolite: a composite island arc-oceanic crust terrane in western California., Geology, 13: 35–38.

    Article  Google Scholar 

  • Spooner, E.T.C. and Fyfe, W.S., 1973. Sub-sea-floor metamorphism, heat and mass transfer., Contributions to Mineralogy and Petrology, 42: 287–304.

    Article  Google Scholar 

  • Stakes, D.S., 1989. Oxygen isotope and mineralogic profiles of oceanic layer 3: a comparison of the Semail ophiolite and ODP Site 735, SW Indian Ocean., EOS, 70: 1041.

    Google Scholar 

  • Stakes, D.S. and O’Neil, J.R., 1982. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks., Earth and Planetary Science Letters, 57: 285–304.

    Article  Google Scholar 

  • Stakes, D.S., Taylor, H.P. and Fisher, R.L., 1984. Oxygen isotope and geochemical characterization of hydrothermal alteration in ophiolite complexes and modern oceanic crust. In: I.G. Gass, S.I. Lippard, and A.W. Shelton (Eds), Ophiolites and Oceanic Lithosphere, Geological Society of London, Blackwell Scientific, Oxford, pp. 199–214.

    Google Scholar 

  • Staudigel, H. and Schmincke, H.-U., 1984. The Pliocene Seamount series of La Palma/Canary Islands., Journal of Geophysical Research, 89: 11915–11215.

    Article  Google Scholar 

  • Suckecki, R.K. and Land, L.S., 1983. Isotopic geochemistry of burial metamorphosed volcanogenic sediments, Great Valley Sequence, Northern California., Geochimica et Cosmochimica Acta, 47: 1487–1499.

    Article  Google Scholar 

  • Varga, R.J. and Moores, E.M., 1985. Spreading structure of the Troodos ophiolite, Cyprus., Geology, 13: 846–850.

    Article  Google Scholar 

  • Zierenberg, R.A., Shanks, W.C. III, Seyfried, W.E. Jr., Koski, R.A. and Strickler, M.D., 1988. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon., Journal of Geophysical Research, 93, 4657–4674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schiffman, P., Evarts, R.C., Williams, A.E., Pickthorn, W.J. (1991). Hydrothermal Metamorphism in Oceanic Crust from the Coast Range Ophiolite of California: Fluid-Rock Interaction in a Rifted Island Arc. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics