Skip to main content

Evidences for Polyphased Oceanic Alteration of the Extrusive Sequence of the Semail Ophiolite from the Salahi Block (Northern Oman)

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The extrusive sequence of the Salahi block (northern Oman) consists of a well-developed dyke complex and thick volcanic member. The latter is composed of three events (V1, V2 and V3). Lenses of pelagic, often metalliferous sediments are present within the lava flows. The largest exposures of these sediments are observed at the interface of the different volcanic units. The V1—V2 contact is also the locus of the fault-controlled, Zuha sulphide prospect.

A strong metamorphic zonation overprints the extrusive sequence of the Salahi block (greenschist-facies assemblage in the dyke complex, prehnitepumpellyite-facies assemblage in the lower part of the volcanic sequence, zeolite-facies and low-temperature assemblages in high stratigraphic level flows). Although the steep thermal gradients and static recrystallization suggest that the observed zonation had developed in response to seawater circulation, the dykes and lava flows alteration differs from that described in oceanic layer 2 in three respects: 1) by the pervasiveness of the recrystallization, 2) by the occurrence of a prehnite-pumpellyite-facies assemblage at the top of the first accretion-related volcanic event (V1), 3) by the relative scarcity of low-temperature minerals and the widespread development of phases uncommon in the modern oceanic crust (i.e. iron-rich pumpellyite) in the high stratigraphic level lavas (V2, V3).

Field observations and mineralogical study indicate that the Salahi block extrusive sequence has been subjected to three stages of hydrothermal circulation and to low-temperature oceanic alteration that were contemporaneous with the three magmatic events of the Semail complex. The superposition of alteration phases accounts for the peculiarities of the metamorphic zonation in the volcanic member of this ophiolite.

The origin of the Zuha mineralized zone is attributed to the hydrothermal phase activated by the second, off-axis, magmatic event. The Zuha prospect displays the characteristics of a hydrothermal discharge zone: sulphide-bearing lavas with a typical stockwork paragenesis (quartz, Fe-chlorite, rectorite, titanite), appear in the uppermost Vl sequence below the gossans. This assemblage results from an interaction between Vl lavas and hot (250–300°C), relatively low pH, metal-loaded, upwelling fluids. After interaction with the volcanics and formation of the sulphide mineralization, the hydrothermal fluids were responsible for the formation of large, Mn-rich, sedimentary lenses at the top of the Vl unit in the vicinity of the mineralized zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabaster, T., Pearce, J.A., Mallick, D.I.J. and Elboushi, I.M., 1980. The volcanic stratigraphy and location of massive sulfide deposits in the Oman ophiolite. In: A. Panayiotou (Ed), Ophiolites, Proceedings of the International Ophiolite Symposium, 1979, Cyprus., Nicosia Ministry of Agriculture Nat. Resources, Geol. survey dept.: 751–757.

    Google Scholar 

  • Alabaster, T. and Pearce, J.A., 1985. The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite., Econ. Geol., 80: 1–16.

    Article  Google Scholar 

  • Alleman, F. and Peters, T., 1972. The ophiolite-radiolarite belt of the north-Oman mountains., Eclogae Geol. Helv., 65: 657–698.

    Google Scholar 

  • Alt, J.C., Honnorez, J., Laverne, C. and Emmermann, N., R., 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, DSDP hole 504B: the mineralogy, chemistry and evolution of seawater-basalt interactions., J. Geophys. Res., 91: 10309–10335.

    Article  Google Scholar 

  • Alt, J.C., Lonsdale, P., Haymon, R. and Muehlenbach K., 1987. Hydrothermal sulphide and oxide deposits on seamounts near 21°N, East Pacific Rise., Geol. Soc. Am. Bull., 98: 157–168.

    Article  Google Scholar 

  • Andrews, A.J., 1980. Saponite and celadonite in layer 2 basalts, D.S.D.P. Leg 37., Contrib. Mineral. Petrol., 73: 323–340.

    Article  Google Scholar 

  • Beurrier, M., 1987. Géologie de la nappe ophiolitique de Samail dans les parties orientales et centrale des montagnes d’Oman., Thèse Doc. ès Sci., Université Paris 6, France, document B.R.G.M., 128.

    Google Scholar 

  • Beurrier, M., Bourdillon de Grissac, C., De Weyer P and Lescuyer J.L., 1987. Biostratigraphie des radiolarites associées aux volcanites ophiolitiques de la nappe de Semail (Sultanat d’Oman): conséquences tectonogénétiques., C. R. Acad. Sci. Paris, 304, Ser. 2: 907–910.

    Google Scholar 

  • Boles, J.R. and Coombs, D.S., 1977. Zeolite facies alteration of sandstones in the Soouthland syncline, New Zealand., Am. J. Sci., 277: 982–1012.Bonatti, E., 1983. Hydrothermal metal deposits from oceanic rifts: a classification. In: P.A. Rona et al. (Eds), Hydrothermal processes at seafloor spreading centers (NATO, Conf. Ser.), Plenum, New York and London: pp. 491–502

    Google Scholar 

  • Bostrom, K. and Peterson, M.N.A., 1966. Precipitates from hydrothermal exhalations on the East Pacific rise., Econ. Geol., 61: 1258–1265.

    Article  Google Scholar 

  • Boudier, F. and Coleman, R.G., 1981. Cross section through the peridotites in the Semail ophiolite, southeastern Oman mountains., J. Geophys. Res., 86: 2573–2592.

    Article  Google Scholar 

  • Boudier, F. and Nicolas, A., 1988. The ophiolites of Oman., Tectonophysics, 151, 1–4.

    Article  Google Scholar 

  • Bowers, T.C., Von Damm, K.L. and Edmond, J.M., 1985. Chemical evolution of mid-ocean ridge hot springs., Geochim. Cosmochim. Acta, 49: 2239–2252.

    Article  Google Scholar 

  • Cann, J.R., 1969. Spilites from the Carlsberg Ridge, Indian Ocean., J. Petrol., 10: 1–19.

    Article  Google Scholar 

  • Cathelineau, M. and Nieva, D., 1985. A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system., Contrib. Mineral. Petrol. 91: 235–244.

    Article  Google Scholar 

  • Ceuleneer, G., Nicolas, A. and Boudier, F., 1988. Mantle flow pattern at an oceanic spreading center: the Oman peridotite record. In: F. Boudier and A. Nicolas (Eds), The ophiolites of Oman., Tectonophysics, 151: 1–26.

    Google Scholar 

  • Coleman, R.G. and Hopson, C. A., 1981. The Oman ophiolite., J. Geoph. Res., 86: 2495–2782.

    Article  Google Scholar 

  • Collinson, T., 1986, Hydrothermal mineralization and basalt alteration in stockwork zones of the Bayda and Lasail massive sulphide deposits, Oman Ophiolite. M.A. Thesis, University of California, Santa Barbara.

    Google Scholar 

  • Coombs, D.S., 1953. The pumpellyite mineral series., Mineral. Mag., 30: 113–135.

    Article  Google Scholar 

  • Coombs, D.S., Nakamura, Y. and Vuagnat, M., 1976. Pumpellyite-Actinolite facies Schists of the Taveyanne formation near Loèche, Valais, Switzerland., J. Petrol., 17: 440–471.

    Article  Google Scholar 

  • Crovisier, J.L., Thomassin, J.H., Juteau, T., Eberhardt, J.C., Touray, J.C. and Baillif, P., 1983. Experimental seawater-basaltic glass interaction at 50°C: study of the early developed phases by electron microscopy and X-Ray photoelectron spectrometry., Geochim. Cosmochim. Acta, 43: 377–387.

    Article  Google Scholar 

  • Date, J., Wanatabe, Y. and Saeki, Y., 1983. Zonal alteration around the Fukazawa Kuroko deposits, Akita prefecture, Northern Japan., Econ. Geol. Mon., 5: 365–386.

    Google Scholar 

  • Delaney, J.R., Mogk, D.W. and Mottl, M.J., 1987. Quartz-cemented breccias from the Mid-Atlantic Ridge: samples of a high salinity hydrothermal upflow zone., J. Geophys. Res., 92: 9175–9192.

    Article  Google Scholar 

  • Detrick, R.S., Honnorez, J., Adamson, A.C., Garrett, W.B., Gillis, K.M., Humphris, S.E., Mevel, C., Meyer, P.S., Petersen, N., Rautenschlein, M., Shibata, T., Staudigel, H., Wool-ridge, A. and Yamamoto, K., 1986. Forages dans la dorsale médio-Atlantique: résultats préliminaires du Leg 106 du Joïdes resolution (Ocean Drilling Program)., C.R. Acad. Sci. Paris, 303, Ser. 2: 379–384.

    Google Scholar 

  • Elthon, D., 1981. Metamorphism in oceanic spreading centers. In: C. Emiliani (Ed), The Sea, Vol 7, John Wiley: pp. 285–303.

    Google Scholar 

  • Ernewein, M. and Whitechurch, H., 1986. Les intrusions ultrabasiques de la séquence crustale de l’ophiolite d’Oman: un evènement témoin de l’extinction d’une zone d’accrétion océanique?, C.R. Acad. Sci. Paris, 303, Ser. 2: 379–384.

    Google Scholar 

  • Ernewein, M., Pflumio, C. and Whitechurch, H., 1988. The death of an accretion zone as evidenced by the magmatic history of the Semail ophiolite (Oman)., Tectonophysics, 151: 245–274.

    Article  Google Scholar 

  • Evarts, R.C. and Schiffman, P., 1983. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California., Am. J. Sci., 283: 289–340.

    Article  Google Scholar 

  • Fleet, A.J. and Robertson, A.H.F., 1980. Ocean-ridge metalliferous and pelagic sediments of the Semail nappe, Oman., J. Geol. Soc. London, 137: 403–422.

    Article  Google Scholar 

  • Germain-Fournier, B., 1986. Les sédiments métallifères océaniques actuels et anciens: caractérisation, comparaisons. Thèse Université Bretagne occidentale, Brest, France.

    Google Scholar 

  • Francheteaú, J., Needham, H.D., Choukroune, P., Juteau, T., Seguret, M., Ballard, R.D., Fox, P.J., Normak, W., Carranza, A., Cordoba, D., Guerrero, J. and Rangin, C., Bougault, H., Cambon, P. and Hekinian, R., 1979. Massive deep-sea sulphide ore discovered on the East Pacific Rise., Nature, 277: 523–528.

    Article  Google Scholar 

  • Franklin, J.M., Lydon, J.W. and Sangster, D.F., 1981. Volcanic-associated massive sulphide deposits., Econ. Geol. 75th. Anniv. Vol., pp. 485–627.

    Google Scholar 

  • Ghent, E.D. and Stout, M.Z., 1981. Metamorphism at the base of the Samail ophiolite, southeastern Oman Mountains., J. Geophys. Res., 86: 2557–2571.

    Article  Google Scholar 

  • Glassley, W., 1975, Low variance phase relationships in a prehnite - pumpellyite facies terrain., Lithos, 8: 69–76.

    Article  Google Scholar 

  • Gillis, K. and Robinson, P.T., 1985. Low temperature alteration of the extrusive sequence, Troodos ophiolite, Cyprus., Can. Min., 23: 431–441.

    Google Scholar 

  • Glennie, K.W., Boeuf, M.G.A., Hugues-Clark, M.W., Moody-Stuart, M., Pilaar, W.F.H. and Reinhardt, B.M., 1974. Geology of the Oman mountains., Kon. Ned. Geol. Mijbouwk Genoot. Vern., 31.

    Google Scholar 

  • Green, K.E., Von Hertzen, R.P. and Williams, D.L., 1981. The Galapagos spreading center at 86° N: A detailed geothermal field study., J. Geophys. Res., 86: 979–986.

    Article  Google Scholar 

  • Haymon, R.M., Koski, R.A., and Abrams, M.J., 1989. Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite., Geology, 17: 531–535.

    Article  Google Scholar 

  • Hekinian, R. and Fouquet, Y., 1985. Volcanism and metallogenesis of axial and off-axial structures on the East-Pacific Rise near 13°N., Econ. Geol., 80 (2): 221–249.

    Article  Google Scholar 

  • Hey, M.H., 1954. A new review of the chlorites., Min. Mag., 30: 277–292.

    Article  Google Scholar 

  • Humphris, S.E. and Thompson, G., 1978a. Hydrothermal alteration of oceanic basalts by seawater., Geochim. Cosmochim. Acta, 42: 107–125.

    Article  Google Scholar 

  • Humphris, S.E. and Thompson, G., 1978b. Trace element mobility during hydrothermal alteration of oceanic basalts., Geochim. Cosmochim. Acta, 42: 127–136.

    Article  Google Scholar 

  • Humphris, S. E., Melson, W.G. and Thompson, R.N., 1980. Basalt weathering on the East Pacific rise and the Galapagos spreading center. Initial Reports of the Deep Sea Drilling Project, 54: 773–788. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Ito, E. and Anderson, A.T. Jr, 1983. Submarine metamorphism of gabbros from Mid-Cayman rise: petrographic and mineralogic constraints on hydrothermal processes at slow spreading ridges., Contrib. Mineral. Petrol., 82: 371–388.

    Article  Google Scholar 

  • Juteau, T., Ernewein, M., Reuber, I., Whitechurch, H. and Dahl, R., 1988. Duality of magma-tism in the plutonic sequence of the Semail nappe, Oman., Tectonophysics, 151: 107–136.

    Article  Google Scholar 

  • Karpoff, A.M., Walter, A.V. and Pflumio, C., 1988. Metalliferous sediments within lava sequences of the Samail ophiolite (Oman): mineralogical and geochemical characterization, origin and evolution., Tectonophysics, 151: 223–246.

    Article  Google Scholar 

  • Kerridge, J.F., Haymon, R.M. and Kastner, M., 1983. Sulfur isotope systematics at the 21°N site, East Pacific Rise., Earth Planet. Sci. Lett., 66: 91–100.

    Article  Google Scholar 

  • Kuniyoshi, S. and Liou, J.G., 1976. Burial metamorphism of the Karmutsen volcanic rocks, northeastern Vancouver island, British Columbia., Am. J. Sci., 276: 1096–1119.

    Article  Google Scholar 

  • Laird, J. and Albee, A. L., 1981. High pressure metamorphism in mafic schists from northern Vermont., Am. J. Sci., 281: 97–126.

    Article  Google Scholar 

  • Lanphere, M.A., 1981. K-Ar ages of metamorphic rocks at the base of the Semait ophiolite, Oman., J. Geophys. Res., 86: 2777–2782.

    Article  Google Scholar 

  • Laverne, C., 1987. Les interactions basalte-fluides en domaine océanique. Minéralogie, pétrologie et géochimie d’un système hydrothermal: le puit 504B, Pacifique oriental. Thèse Doc. ès. Sci., Université Aix-Marseille, France.

    Google Scholar 

  • Leake, B.E., 1978. Nomenclature of amphiboles., Am. Min., 63: 1023–1052.

    Google Scholar 

  • Liou, J.G., 1971. Stilbite-Laumontite equilibrium., Contrib. Mineral. Petrol., 31: 171–177.

    Article  Google Scholar 

  • Liou, J.G., 1979. Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite., Am. Mineral., 64: 1–14.

    Google Scholar 

  • Liou, J.G., Maruyama, S. and Cho, M, 1985. Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism., Mineral. Mag., 49: 321–333.

    Article  Google Scholar 

  • Liou, J.G., Hyung Shik K. and Maruyama, S., 1983. Prehnite-Epidote equilibria and their petrologic applications., J. Petrol., 24: 321–342.

    Article  Google Scholar 

  • Lippard, S.J., Shelton, A.W. and Gass, I.G., 1986. The ophiolite of Northern Oman., Geol. Soc., London, Mem., 11.

    Google Scholar 

  • Mc Culloch, M.T., Gregory, R.T., Wasserburg, G. J. and Taylor, H.P. Jr., 1981. Sm-Nd, Rb-Sr and O16/O18 isotopic systematics in an oceanic crustal section: evidence from the Semail ophiolite., J. Geophys. Res., 86: 2721–2735.

    Article  Google Scholar 

  • Merlivat T. L., Pineau, F. and Javoy, M. 1987. Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration., Earth Planet. Sci. Let., 84: 100–108.

    Article  Google Scholar 

  • Mevel, C., 1987. Evolution of oceanic gabbros from D.S.D.P. Leg 82: influence of the fluid phase on metamorphic crystallizations., Earth Planet. Sci. Lett., 83: 67–79.

    Article  Google Scholar 

  • Mottl, M.J., 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges., Geol. Soc. Am. Bull., 94: 161–180.

    Article  Google Scholar 

  • Nehlig, P. and Haymon, R., 1987. Microthermometric study of fluid inclusions in a fossil ridge crest, hydrothermal discharge zone in the Bayda area (North Oman Ophiolite)., Eos Trans., A. G. U., 68: 1545.

    Google Scholar 

  • Nehlig, P. and Juteau, T., 1988. Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Semail ophiolite (Oman)., Tectonophysics, V151: 199–221.

    Article  Google Scholar 

  • Pallister, J.S., 1981. Structure of the sheeted dyke complex of the Semail Ophiolite near Ibra., J. Geophys. Res., 86: 2661–2672.

    Article  Google Scholar 

  • Pearce, J. A., Alabaster, T., Shelton, A.W and Searle, M.P., 1981. The Oman ophiolite as an arc-basin complex: evidence and implications., Trans. R. Soc. London, 300: 299–317.

    Article  Google Scholar 

  • Pflumio, C., 1988. Histoire volcanique et hydrothermale du massif de Salahi: implications sur l’origine et l’évolution de l’ophiolite de Sémail (Oman). Thèse, Ecole Nat. Sup des Mines de Paris, France.

    Google Scholar 

  • Pflumio, C., Michard, A., Whitechurch, H. and Juteau, T., 1990. Petrology of the extrusive sequence of the Salahi block (Northern Oman): implications for the origin and evolution of the Semail ophiolite. Symposium on Ophiolite Genesis and Evolution of the Oceanic Lithosphere, Muscat, Abstracts with program.

    Google Scholar 

  • Pflumio, C., Juteau, T. and Michard, A., Petrology and geochemistry of the volcanic sequence of the Salahi block (Northern Oman): implications for the origin and evolution of the Semail ophiolite, submitted to Lithos, 1991.

    Google Scholar 

  • Pisutha-Arnond, V. and Ohmoto, H., 1983. Thermal history and chemical and isotopic compositions of the ore forming fluids responsible for the Kuroko massive sulphide deposits in the Hokuroku district of Japan., Econ. Geol. Mon., 5: 523–558.

    Google Scholar 

  • Regba, M., Agrinier, P., Pflumio, C., Loubet, M. A geochemical study of an oceanic, hydrothermal discharge zone: the Zuha sulphide prospect in the Salahi block (Semail ophiolite, Oman). This volume.

    Google Scholar 

  • Richards, H.G., Cann, J.R. and Jensenius, J., 1989. Mineralogical and metasomatic zonation of alteration pipes of Cyprus sulphide deposits. J. Geophys. Res., 84: 91–115.

    Google Scholar 

  • Richardson, C.J., Cann, J.R., Richards, H.G. and J.G. Cowan, 1987. Metal-depleted root zones of the Troodos ore-forming hydrothermal systems., Cyprus, Earth Planet. Sci. Let., 84: 243–253.

    Article  Google Scholar 

  • Robertson, A.H.F., 1976. Origins of ochres and umbers: evidences from Skouriotissa, Troodos massif, Cyprus., Trans. Inst. Min. Metall. Sec. B, Appl. Earth Sci.: 245–251.

    Google Scholar 

  • Robertson, A.H.F. and Fleet, A.J., 1986. Geochemistry and paleo-oceanography of metalliferous and pelagic sediments from the late cretaceous Oman ophiolite., Mar. Petrol. Geol., 3: 315–337.

    Article  Google Scholar 

  • Sayles, F.L. and Bischoff, J.L., 1973. Ferromanganoan sediments in the equatorial East Pacific Rise., Earth Planet. Sci. Lett.: 19, 330–336.

    Article  Google Scholar 

  • Seyfried, W.E. et, Bischoff, J.L., 1977. Hydrothermal transport of heavy metals by seawater: the role of seawater/basalt ratio., Earth Planet. Sci. Lett., 34: 71–77.

    Article  Google Scholar 

  • Seyfried, W. E., and Mottl, M. J., 1982. Hydrothermal alteration of basalt by seawater under seawater dominated conditions., Geochim. Cosmochim. Acta, V46: 985–1002.

    Article  Google Scholar 

  • Seyfried, W. E. and Janecky, D.R., 1985. Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: influence of fluid pressure and basalt composition and crystallinity., Geochim. Cosmochim. Acta, 49: 2545–2560.

    Article  Google Scholar 

  • Stakes, D.S. and O’Neil, J.R., 1982. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks., Earth Planet. Sci. Lett., 57: 285–304.

    Article  Google Scholar 

  • Stern, C. and Elthon, D., 1979. Vertical variations in the effects of hydrothermal metamorphism in Chilean ophiolites: Their implications for ocean floor metamorphism., Tectonophysics, 55: 179–213.

    Article  Google Scholar 

  • Thorette, J., 1986. Contribution à l’étude de l’hydrothermalisme océanique: exemple du district minéralisé de York Harbour (ophiolite de Blow-me-Down, Bay of Island, Terre -Neuve). Thèse, Ecole Nat. Sup. Mines Paris, France.

    Google Scholar 

  • Tippit, P.R., Pessagno, E.A. Jr. and Smewing, J.D., 1981. The biostratigraphy of sediments in the volcanic unit of the Semail ophiolite., J. Geophys. Res., 86: 2756–2762.

    Article  Google Scholar 

  • Tuffar, W., Tuffar, E. and Lange, J., 1986. Ore paragenesis of recent hydrothermal deposits at the Cocos-Nazca plate boundary (Galapagos rift) at 85°51’ and 85°55’W: complex massive sulfide mineralizations and mineralized basalts., Geol. Rundschau, 75: 829–861.

    Article  Google Scholar 

  • Urabe, T., Scott S.D., and Hattori, K., 1983. A comparison of footwall-rock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits., Econ. Geol. Mon., 5: 345–364.

    Google Scholar 

  • Wise, W.S. and Eugster, H.P., 1964. Celadonites: synthesis, thermal stability and occurrences., Am. Min., 49: 1031–1083.

    Google Scholar 

  • Wolery, T.J. and Sleep, T.J., 1976. Hydrothermal circulation and geochemical flux at mid-ocean ridges., J. Geol., 84: 249–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pflumio, C. (1991). Evidences for Polyphased Oceanic Alteration of the Extrusive Sequence of the Semail Ophiolite from the Salahi Block (Northern Oman). In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics