Skip to main content

Root colonization by indigenous and introduced microorganisms

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

Root colonization is defined as the proliferation of microorganisms in, on, or around roots. It includes dispersal of microorganisms from a source of inoculum to the actively growing root, and multiplication or growth in the rhizosphere. Soil physical, chemical, and biological factors have been shown to affect root colonization, but few phenotypic attributes of plants and microorganisms which contribute to successful root colonization have been identified. Quantitative studies on the distributon of root colonists in time and space are needed to develop mathematical models that describe and predict the root colonization process. This would enable more effective management of rhizosphere populations to achieve biological control of soilborne disease or to enhance plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott L K and Robson A D 1984 Colonization of the root system of subterranean clover by three species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 96, 274–281.

    Article  Google Scholar 

  • Ahmad J S and Baker R 1987a Rhizosphere competence of Trichoderma harzianum. Phytopathology 77, 182–189.

    Article  Google Scholar 

  • Ahmad J S and Baker R 1987b Competitive saprophytic ability and cellulolytic activity of rhizosphere competent mutants of Trichoderma harzianum. Phytopathology 77, 358–362.

    Article  CAS  Google Scholar 

  • Anderson A J, Habibzadegah-Tari P and Tepper C S 1988 Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl. Environ. Microbiol. 54, 375–380.

    PubMed  CAS  Google Scholar 

  • Azad H R, Davis J R, Schnathorst W C and Kado C I 1985 Relationship between rhizoplane and rhizosphere bacteria and Verticillium wilt resistance in potato. Arch. Microbiol. 140, 347–351.

    Article  Google Scholar 

  • Bagyaraj D J 1984 Biological interactions with VA mycorrhizal fungi. In VA Mycorrhiza. Eds. C L Powell and D J Bagyaraj. pp 131–153. CRC Press, Boca Raton.

    Google Scholar 

  • Bahme J B and Schroth M N 1987 Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potatoes. Phytopathology 77, 1093–1100.

    Article  Google Scholar 

  • Bashan Y 1986 Migraton of the rhizosphere bacteria Azo-spirillium brasilense and Pseudomonas fluorescens toward wheat roots in soil. J. Gen. Microbiol. 132, 3407–3414.

    Google Scholar 

  • Bashan Y and Levanony H 1987 Horizontal and vertical movement of Azospirillum brasiliense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J. Gen. Microbiol. 133, 3473–3480.

    Google Scholar 

  • Bennett R A and Lynch J M 1981 Colonization potential of bacteria in the rhizosphere. Curr. Microbiol. 6, 137–138.

    Article  Google Scholar 

  • Bitton G, Lahav N and Henis Y 1974 Movement and retention of Klebsiella aerogenes in soil columns. Plant and Soil 40, 373–380.

    Article  CAS  Google Scholar 

  • Bowen G D and Rovira A D 1976 Microbial colonization of plant roots. Annu. Rev. Phytopathol. 14, 121–144.

    Article  Google Scholar 

  • Bull C T 1987 Wheat root colonization by disease-suppressive or nonsuppressive bacteria and the effect of population size on severity of take-all caused by Gaeumannomyces graminis var tritici. MS thesis. Wash. State Univ., Pullman. 75 p.

    Google Scholar 

  • Chakraborty S, Theodorou C and Bowen G D 1985 The reduction of root colonization by mycorrhizal fungi by mycophagous amoebae. Can. J. Microbiol. 31, 295–297.

    Article  Google Scholar 

  • Chao W L, Nelson E B, Harman G E and Hoch H C 1986 Colonization of the rhizosphere by biological control agents applied to seeds. Phytopathology 76, 60–65.

    Article  Google Scholar 

  • Chet I and Baker R 1980 Introduction of suppressiveness to Rhizoctonia solani in soil. Phytopathology 70, 994–998.

    Article  Google Scholar 

  • Christensen H and Funck-Jensen D 1989 Growth rate of rhizosphere bacteria measured directly by the tritiated thymidine incorporation technique. Soil Biol. Biochem, 21, 113–117.

    Article  Google Scholar 

  • Compeau G, Al-Achi B J, Platsouka E and Levy S B 1988 Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol. 54, 2432–2438.

    PubMed  CAS  Google Scholar 

  • Cooper K M 1984 Physiology of VA mycorrhizal associations. In VA Mycorrhiza. Eds. C L Powell and D J Bagyaraj. pp 156–186. CRC Press, Baton Rouge.

    Google Scholar 

  • Dazzo P 1980 Adsorption of microorganisms to roots and other plant surfaces. In Adsorption of Microorganisms to Surfaces. Eds. G Bitton and K C Marshall, pp 253–316. Wiley and Sons, New York.

    Google Scholar 

  • De Weger L A, van der Vlugt C I M, Wijfjes A H M, Bakker P A H M, Schippers B and Lugtenberg B 1987 Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 169, 2769–73.

    PubMed  Google Scholar 

  • Dowling D N and Broughton D N 1986 Competition for nodulation of legumes. Annu. Rev. Microbiol. 40, 131–157.

    Article  PubMed  CAS  Google Scholar 

  • Drahos D J, Hemming B C and McPherson S 1986 Tracking recombinant organisms in the environment: B-galactosid-ase as a selectable non-antibiotic marker for fluorescent pseudomonads. Bio/Technology 4, 439–444

    Article  CAS  Google Scholar 

  • Dughri M H and Bottomley P J 1984 Soil acidity and the composition of an indigenous population of Rhizobium trifolii in nodules of different cultivars of Trifolium sub-terraneum L. Soil Biol. Biochem. 16, 405–411.

    Article  Google Scholar 

  • Duniway J M and McKeen C D 1987 Dispersal of Phytophthora cryptogea zoospores in soils and glass mi-crobeads by water flow. (Abstr.) Phytopathology 77, 1744.

    Google Scholar 

  • Foster R C 1986 The ultrastructure of the rhizoplane and rhizosphere. Annu. Rev. Phytopathol. 24: 211–34.

    Article  Google Scholar 

  • Foster R C, Rovira A D and Cock T W 1983 Ultrastructure of the Root-Soil Interface. Am. Phytopathol. Soc, St. Paul, 157 pp.

    Google Scholar 

  • Francis R and Read D J 1984 Direct transfer of carbon between plants connected by vesiculararbuscular mycor-rhizal mycelium. Nature 307, 53–65.

    Article  CAS  Google Scholar 

  • Fravel D R 1988 Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26, 75–91.

    Article  CAS  Google Scholar 

  • Geels F P and Schippers B 1983 Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathol. Z. 108, 193–206.

    Article  Google Scholar 

  • Gilligan C A 1983 Modeling of soilborne pathogens. Annu. Rev. Phytopathol. 21, 45–64.

    Article  Google Scholar 

  • Graham J H, Leonard R T and Menge J A 1981 Membrane-mediated decrease in root exudation responsible for phosphorous inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68, 548–1981.

    Article  PubMed  CAS  Google Scholar 

  • Griffin D M and Quail G 1968 Movement of bacteria in moist, particulate systems. Aust. J. Biol. Sci. 21, 579–82.

    PubMed  CAS  Google Scholar 

  • Hadar Y, Harman G E and Taylor A G 1984 Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74, 106–110.

    Article  Google Scholar 

  • Hale M G, Moore L D and Griffin G J 1978 Root exudates and exudation. In Interactions Between Non-pathogenic Soil Microorganisms and Plants. Eds. Y R Dommergues and S V Krupa. Elsevier, North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Halverson L J and Handelsman J 1990 Stability of antibiotic-resistance markers in Bacillus cereus UW85. In The Rhizosphere and Plant Growth. Eds. D L Keister and P B Cregan. p 107. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Henry C M and Deacon J W 1981 Natural (non-pathogenic) death of the cortex of wheat and barley seminal roots, as evidenced by nuclear staining with acridine orange. Plant and Soil 60, 255–274.

    Article  Google Scholar 

  • Hiltner L 1904 Ãœber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Beriicksichtigung der Gründüngung und Brache. Arb. Deut. Landw. Ber. 98,59–78.

    Google Scholar 

  • Howie W J, Cook R J and Weller D M 1987 Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77, 286–92.

    Article  Google Scholar 

  • Howie W, Correll M, Gutterson N and Suslow T 1988 Indirect evidence for Oomycin A in situ: effect of soil temperature, moisture, and texture. Phytopathology 78, 1558 (Abstr.).

    Google Scholar 

  • Iswandi A, Bossier P, Vandenabeele J and Verstaete W 1987 Influence of the inoculation density of the rhizo-pseudomonad strain 7NSK2 on the growth and the composition of the root microbial community of maize (Zea mays) and barley (Hordeum vulgare). Biol. Fertil. Soils 4, 119–123.

    Google Scholar 

  • James D W Jr., Suslow T V and Steinback K E 1985 Relationship between rapid, firm adhesion and long-term colonization of roots by bacteria. Appl. Environ. Microbiol 50, 392–97.

    PubMed  CAS  Google Scholar 

  • Jasper D A, Robson A D and Abbott L K 1979 Phosporous and the formation of vesiculararbuscular mycorrhizas. Soil Biol. Biochem. 11, 501–505.

    Article  CAS  Google Scholar 

  • Juhnke M E, Mathre D E and Sands D C 1987 Identification and characterization of rhizosphere-competent bacteria of wheat. Appl. Environ. Microbiol. 53, 2793–99.

    PubMed  CAS  Google Scholar 

  • Korhonen T K, Nurmiaho-Lassila E L, Laakso T and Haahtella K 1986 Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals. Plant and Soil 90, 59–69.

    Article  Google Scholar 

  • Lawrence J R, Delaquis P J, Korber D R and Caldwell D E 1987 Behavior of Psuedomonas fluorescens within the hy-drodynamic boundary layers of surface microenviron-ments. Microb Ecol. 14, 1–14.

    Article  CAS  Google Scholar 

  • Levanony H, Bashin Y and Kahana Z E 1987 Enzyme-linked immunosorbent assay for specific identification and enumeration of Azospirillum brasilense Cd. in cereal roots. Appl. Environ. Microbiol. 53, 358–364.

    PubMed  CAS  Google Scholar 

  • Li D and Alexander M 1986 Bacterial growth rates and competition affect nodulation and root colonization by Rhizobium meliloti. Appl. Environ. Microbiol. 52, 807–811.

    PubMed  CAS  Google Scholar 

  • Liddell C M and Parke J L 1989 Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil. Phytopathology 79, 1327–1332.

    Article  Google Scholar 

  • Loper J E, Haack C and Schroth M N 1985 Population dynamics of soil pseudomonads in rhizosphere of potato (Solanum tuberosum L.) Appl. Environ. Microbiol. 49, 416–422.

    PubMed  CAS  Google Scholar 

  • Loper J E, Suslow T V and Schroth M N 1984 Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology 74, 1454–1460.

    Article  Google Scholar 

  • Madsen E L and Alexander M 1982 Transport of Rhizobium and Pseudomonas through soil. Soil Sci. Soc. Am. J. 46, 557–60.

    Article  Google Scholar 

  • Marois J J, Fravel D R and Papavizas G C 1984 Ability of Talaromyces flavus to occupy the rhizosphere and its interaction with Verticillium dahliae. Soil Biol. Biochem. 16, 387–390.

    Article  Google Scholar 

  • Marshall K C 1980 Adsorption of microorganisms to soils and sediments. In Adsorption of Microorganisms to Surfaces. Eds. G Bitton and K C Marshall, pp 317–329. Wiley and Sons, New York.

    Google Scholar 

  • Mellor H Y, Glenn A R, Arwas R and Dilworth M J 1987 Symbiotic and competitve properties of motility mutants of Rhizobium trifolii TAI. Arch. Microbiol. 148, 34–39.

    Article  CAS  Google Scholar 

  • Menge J A 1983 Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61, 1015–1024.

    Article  Google Scholar 

  • Meyer J R and Linderman R G 1986 Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant-growth promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18,185–190.

    Article  CAS  Google Scholar 

  • Neal J L Jr., Atkinson T G and Larson, R I 1970 Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can J. Microbiol. 16, 153–158.

    Article  PubMed  Google Scholar 

  • Newman E I 1985 The rhizosphere: carbon sources and microbial populations. In Ecological Interactions in Soil. Ed. A H Fitter, pp 107–121.

    Google Scholar 

  • Newman E I and Watson A 1977 Microbial abundance in the rhizosphere: a computer model. Plant and Soil 48, 17–56.

    Article  Google Scholar 

  • Papendick R I and Campbell G S 1975 Water potential in the rhizosphere and plant and methods of measurement and experimental control. In Water Potential Relations in Soil Microbiology, pp 39–49. Soil Sci Soc. Am. Special Pub. No. 9. Madison, WI.

    Google Scholar 

  • Parke J L, Liddell C M and Clayton M K 1990 Relationship between soil mass adhering to pea taproots and recovery of Pseudomonas fluorescens from the rhizosphere. Soil Biol. Biochem. 22, 495–499.

    Article  Google Scholar 

  • Parke J L, Linderman R G and J M Trappe 1983 Effect of root zone temperatures on ectomycorrhiza and vesicular-arbuscular mycorrhiza formation in disturbed and undisturbed forest soils of southwest Oregon. Can. J. For. Res. 13, 657–665.

    Article  Google Scholar 

  • Parke J L, Moen R, Rovira A D and Bowen G D 1986 Soil water flow affects the rhizosphere distribution of a seed-borne biological control agent, Pseudomonas fluorescens. Soil Biol. Biochem. 18, 583–588.

    Article  Google Scholar 

  • Parke J L, Rovira A D and Bowen G D 1984 Soil matric potential affects colonization of wheat roots by a pseudo-monad suppressive to take-all. (Abstr.) Phytopathology 74, 806.

    Google Scholar 

  • Patel J J and Craig A S 1984 Isolation and characterization of bacteriophages active against strains of Rhizobium trifolii used in legume inoculants in New Zealand. NZ J. Sci. 27, 81–86.

    Google Scholar 

  • Rovira A D and Campbell R 1974 Scanning electron microscopy of microorganisms on the roots of wheat. Microb. Ecol. 1, 15–23.

    Article  Google Scholar 

  • Rovira A D and Davey C B 1974 Biology of the rhizosphere. In The Plant Root and its Environment. Ed. E W Carson. pp 153–204. Univ. Press, Charlottesville, VA.

    Google Scholar 

  • Scher F M, Ziegle J S and Kloepper J W 1984 A method for assessing the root-colonizing capacity of bacteria on maize. Can. J. Microbiol. 30, 151–57.

    Article  Google Scholar 

  • Scher F M, Kloepper J W and Singleton C A 1985 Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can. J. Microbiol. 31, 570–574.

    Article  Google Scholar 

  • Schippers B, Bakker A W and Bakker P A H M 1987 Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25, 339–358.

    Article  Google Scholar 

  • Stephens P M, O’Sullivan M and O’Gara F 1987 Effect of bacteriophage on colonization of sugarbeet roots by fluorescent Pseudomonas spp. Appl. Environ. Microbiol. 53, 1164–1167.

    PubMed  CAS  Google Scholar 

  • Schmidt E L 1979 Initiation of plant root microbe interactions. Annu. Rev. Microbiol. 33, 355–379.

    Article  PubMed  CAS  Google Scholar 

  • Suslow T V, Matsubara D and Davies M 1987 Application of tube-nucleation assays to rapid population estimates of rhizobacteria expressing novel ice-nucleation activity. Curr. Plant Sci. Biotechnol. Agric. 4, 1018–1024.

    Article  Google Scholar 

  • Suslow T V and Schroth M N 1982 Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72: 111–15.

    Article  Google Scholar 

  • Suslow T V and Schroth M N 1982 Rhizobacteria of sugar-beets: effects of seed application and root colonization on yield. Phytopathology 72, 199–206.

    Article  Google Scholar 

  • Vesper S J 1987 Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl. Environ. Microbiol. 53, 1397–1403.

    PubMed  CAS  Google Scholar 

  • Vesper S J and Bauer W D 1986 Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Appl. Environ. Microbiol. 52, 134–141.

    PubMed  CAS  Google Scholar 

  • Weaver R W and Frederick L R 1974 Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. I. Greenhouse studies. Agron. J. 66, 229–232.

    Article  Google Scholar 

  • Walker N A and Smith S E 1984 The quantitative study of mycorrhizal infection. II. The relation of rate of infection and speed of fungal growth to propagule density, the mean length of the infection unit and the limiting value of the fraction of the root infected. New Phytol. 96, 55–69.

    Article  Google Scholar 

  • Weller D M 1983 Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73, 1548–1553.

    Article  Google Scholar 

  • Weller D M 1984 Distribution of a take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl. Environ. Microbiol. 48, 897–899.

    PubMed  CAS  Google Scholar 

  • Weller D M 1986 Effects of wheat genotype on root colonization by a take-all suppressive strain of Pseudomonas fluorescens. Phytopathology 76, 1059 (Abstr.).

    Google Scholar 

  • Weller D M 1988 Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

  • Wilkinson H T, Miller R D and Millar R L 1981 Infiltration of fungal and bacterial propagules into soil. Soil Sci. Soc. Am. J. 45, 1034–1039.

    Article  Google Scholar 

  • Wong P T W and Griffin D M 1976 Bacterial movement at high matric potentials-I. In artificial and natural soils. Soil Biol. Biochem. 8, 215–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parke, J.L. (1991). Root colonization by indigenous and introduced microorganisms. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics