Skip to main content

Rhizosphere research - 85 years of progress and frustration

  • Chapter

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

This paper reviews the major steps which have contributed to our knowledge of rhizosphere biology since 1904. The progress made has been very considerable, and the frustrations limited. Prospects are bright for improving our understanding of the biology of the rhizosphere and for managing the rhizosphere microflora to increase plant growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison F E 1947a Azotobacter inoculation of crops. I. Historical. Soil Sci. 64, 413–429.

    Article  CAS  Google Scholar 

  • Allison F E 1947b Azotobacter inoculation of crops. II. Effect on crops under greenhouse conditions. Soil Sci. 64, 489–497.

    Article  CAS  Google Scholar 

  • Austin J H 1978 Chase, Chance and Creativity. Colombia University Press, New York. 237 p.

    Google Scholar 

  • Bahme J B, Schroth M N, Van Gundy S D, Weinhold A R and Tolentino D M 1988 Effect of inocula delivery systems on rhizobacterial colonization of underground organisms of potato. Phytopathology 78, 534–542.

    Article  Google Scholar 

  • Bakker P A H M, Bakker A W, Marugg J D, Weisbeck P J and Schippers B 1987. A bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp. in short potato rotation. Soil Biol. Biochem. 19, 443–450.

    Article  CAS  Google Scholar 

  • Balandreau J and Knowles R 1978 The rhizosphere. In Interactions Between Non-pathogenic Soil Micro-organisms and Plants. Eds Y R Dommergues and S V Krupa. pp 243–268. Elsevier, Amsterdam, New York.

    Chapter  Google Scholar 

  • Barber D A 1966 Effect of microorganisms on nutrient absorption by plants. Nature London 212, 638–640.

    Article  CAS  Google Scholar 

  • Barber D A 1967 Microorganisms and the inorganic nutrition of higher plants. Annu. Rev. Pl. Physiol. 19, 71–88.

    Article  Google Scholar 

  • Barber D A and Gunn K B 1974 The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol. 73, 39–45.

    Article  CAS  Google Scholar 

  • Barber D A and Lee R B 1974 The effect of microorganisms on the absorption of manganese by plants. New Phytol. 73, 97–106.

    Article  CAS  Google Scholar 

  • Barber D A and Martin J K 1976 The release of organic substances by cereal roots into soil. New Phytol. 76, 69–80.

    Article  CAS  Google Scholar 

  • Barber D A, Bowen G D and Rovira A D 1976 Effects of microorganisms on absorption and distribution of phosphate in barley. Aust. J. Pl. Physiol. 3, 801–808.

    Article  CAS  Google Scholar 

  • Barnet Y M, Trinick M J, Date R A and Roughley R J 1988 Ecology of the root nodule bacteria. In Microbiology in Action. Eds W G Murrell and I R Kennedy, pp 1–22. Research studies Press Ltd. Letchworth, England and John Wiley and Sons Inc., New York.

    Google Scholar 

  • Bohlool B B and Schmidt E L 1980 The immunofluorescence approach in microbial ecology. Adv. Microbiol. Ecol. 4, 203–241.

    Article  Google Scholar 

  • Bottomley P J and Dughri M H 1989 Population size and distribution of Rhizobium leguminosarum bv trifolii in relation to total soil bacteria and soil depth. Appl. Environ. Microbiol. 55, 959–964.

    PubMed  CAS  Google Scholar 

  • Bowen G D 1980 Misconceptions, concepts and approaches in rhizosphere biology. In Contemporary Microbial Ecology. Ed. D G Ellwood. pp 283–304. Academic Press, London, England.

    Google Scholar 

  • Bowen G D and Rovira A D 1961 The effects of microorganisms on plant growth. I. Development of roots and root hairs in sand and agar. Plant and Soil 15, 166–189.

    Article  Google Scholar 

  • Bowen G D and Rovira A D 1966 Microbial factor in short-term phosphate uptake studies with plant roots. Nature 211, 666–668.

    Google Scholar 

  • Bowen G D and Rovira A D 1968 The influence of microorganisms on growth and metabolism of plant roots. In Root Growth. Ed. W J Whittington, pp 170–201. Butter-worths, London, England.

    Google Scholar 

  • Bowen G D and Rovira A D 1973 Are modelling approaches useful in rhizosphere biology? Bull. Ecol. Res. Comm. Stockholm 17, 443–450.

    Google Scholar 

  • Brisbane P G and Rovira A D 1988 Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol. 37, 104–111.

    Article  CAS  Google Scholar 

  • Brown M E 1974 Seed and root bacterization. Annu. Rev. Phytopathol. 12, 181–197

    Article  CAS  Google Scholar 

  • Brown M E, Burlingham S K and Jackson R M 1964 Studies on Azotobacter species in soil. III. Effects of artificial inoculation on crop yields. Plant and Soil 20, 199–214.

    Article  Google Scholar 

  • Campbell R and Porter R 1982 Low temperature scanning electron microscopy of microorganisms in soil. Soil Biol. Biochem. 14, 241–245.

    Article  Google Scholar 

  • Chakraborty S and Warcup J H 1983 Soil amoebae and saprophytic survival of Gaeumannomyces graminis var. tritici in a suppressive pasture soil. Soil Biol. Biochem. 15, 181–185.

    Article  Google Scholar 

  • Chet I (Ed) 1987 Innovative Approaches to Plant Disease Control. John Wiley and Sons, New York. 322 p.

    Google Scholar 

  • Clark F E 1948 Azotobacter inoculation of crops. III. Recovery of Azotobacter from the rhizosphere. Soil Sci. 65, 193–202.

    Article  Google Scholar 

  • Clark F F 1949 Soil microorganisms and plant growth. Adv. Agron. 1, 241–288.

    Article  CAS  Google Scholar 

  • Cook R J and Baker K F 1983 The Nature and Practice of Biological Control of Plant Pathogens. Am. Phytopath. Soc., St Paul, MN.

    Google Scholar 

  • Cooper R 1959 Bacterial fertilizers in the Soviet Union. Soils Fertil. 22, 227–233.

    Google Scholar 

  • Curl E A 1979 Effects of mycophagous Collembola on Rhizoctonia and cotton seedling disease. In Soil-Borne Plant Pathogens. Eds. B Schippers and W Gams. pp. 253–269, Academic Press, London, England.

    Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere. Springer- Verlag, Berlin. 288 p.

    Book  Google Scholar 

  • Curl E A 1988 The role of soil microfauna in plant disease suppression. CRG Crit. Rev. Plant Sci. 7, 175–196.

    Article  Google Scholar 

  • Date R A 1988 Colonization of the rhizosphere by root nodule bacteria. In Microbiology in Action. Eds W G Murrell and I R Kennedy, pp 23–33. Research Studies Press Ltd, Letchworth, England and John Wiley and Sons, New York.

    Google Scholar 

  • Dart P J 1971 Scanning electron microscopy of roots. J. Exp. Bot. 22, 163–168.

    Article  Google Scholar 

  • Dart P J and Mercer F V 1964 The legume rhizosphere. Arch. Mikrobiol. 47, 344–378.

    Article  Google Scholar 

  • Day J M, Neves M C P and Dobereiner J 1975 Nitrogen fixation on the roots of tropical forage grasses. Soil Biol. Biochem. 7, 107–112.

    Article  CAS  Google Scholar 

  • Dobereiner J 1968 Non-symbiotic nitrogen fixation in tropical soils. Pesq. Agropic. Brazil. 1, 357–365.

    Google Scholar 

  • Drahos D J, Hemming B C and McPherson S 1986 Tracking recombinant organisms in the environment: β-galactosid-ase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4, 439–444.

    Article  CAS  Google Scholar 

  • Eklund E 1970 Secondary effects of some pseudomonads in the rhizoplane of peat grown cucumber plants. Acta Agric. Scand. Suppl. 17. Stockholm. 57 p.

    Google Scholar 

  • Foster R C 1981 The ultrastructure and histochemistry of the rhizosphere. New Phytol. 89, 263–273.

    Google Scholar 

  • Foster R C 1986 The ultrastructure of the rhizoplane and rhizosphere. Annu. Rev. Phytopathol. 24, 211–234.

    Article  Google Scholar 

  • Foster R C and Bowen G D 1982 Plant surfaces and bacterial growth: The rhizosphere and rhizoplane. In Phyto-pathogenic Prokaryotes, Vol. 1. Eds M S Mount and G H Lacey. pp 159–185. Academic Press, New York.

    Chapter  Google Scholar 

  • Foster R C and Rovira A D 1978 The ultrastructure of the rhizosphere of Trifolium subterraneum L. In Microbiol. Ecology. Eds M W Loutit and J A R Miles, pp 278–290. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Foster R C, Rovira A D and Cock T W 1983 Ultrastructure of the Root-Soil Interface. The American Phytopathologi-cal Society, St Paul, MN. 157 p.

    Google Scholar 

  • Fravel D R 1988 Role of antibiotics in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26, 75–91.

    Article  CAS  Google Scholar 

  • Gerhardson B and Clarholm M 1986 Microbial communities on plant roots. In Microbial Communities in Soil. Eds V Jensen, A Kjøller and L H Sørensen. pp 18–34. Elsevier, London, England.

    Google Scholar 

  • Gerik J S, Lommel S A and Huisman O C 1987 A specific serological staining procedure for Verticillium dahliae in cotton root tissue. Phytopathology 77, 261–266.

    Article  CAS  Google Scholar 

  • Gilligan C A 1985 Probability models for host infection by soil-borne fungi. Phytopathology 75, 61–67.

    Article  Google Scholar 

  • Gray T R G 1967 Stereoscan electron microscopy of microorganisms. Science N.Y. 155, 1668–1670.

    Article  CAS  Google Scholar 

  • Greaves M P and Darbyshire J F 1972 The ultrastructure of the mucilaginous layer on plant roots. Soil Biol. Biochem. 4, 443–449.

    Article  Google Scholar 

  • Hiltner L 1904 Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Gründüngung und Brache. Arb. Dtsch. Landwirt. Ges. 98, 59–78.

    Google Scholar 

  • Huisman O G 1982 Interrelations of root growth dynamics to epidemiology of root-invading fungi. Annu. Rev. Phytopathol. 20, 303–327.

    Article  Google Scholar 

  • Ishizawa S T, Suzuki T, Sato O and Toyoda H 1957 Studies on microbiol population in the rhizosphere of higher plants with special reference to the method of study. Soil Plant Food (Tokyo) 3, 85–94.

    Article  CAS  Google Scholar 

  • Jenny H and Grossenbacker K 1963 Root-boundary zones as seen in this electron microscope. Soil Sci. Soc. Am. 27, 273–277.

    Article  Google Scholar 

  • Jones P C T and Mollison J E 1948 A technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol. 2, 54–69.

    Article  CAS  Google Scholar 

  • Kass D L, Drosdoff M and Alexander M 1971 Nitrogen fixation by Azotobacter paspali in association with Bahia-grass (Paspalum notatum). Soil Sci. Soc. Am. Proc. 35, 286–289.

    Article  CAS  Google Scholar 

  • Katznelson H, Lochhead A G and Timosin M I 1948 Soil microorganisms and the rhizosphere. Bot. Rev. 14,487–543.

    Article  Google Scholar 

  • Katznelson H, Rouatt J V and Payne T M B 1954 Liberation of amino acids by plant roots in relation to desiccation. Nature 174, 1110–1111.

    Article  PubMed  CAS  Google Scholar 

  • KIeer A 1980 Biological control of crown gall through production of agrocin-84. Plant Dis. 64, 25–30.

    Google Scholar 

  • Kloepper J W, Lifshitz R and Schroth M N 1988 Pseudo-monas inoculants to benefit plant production. ISI Altas of Science: Anim. Plant Sci. 1988, 60–64.

    Google Scholar 

  • Kloepper J W, Schroth M N and Miller T D 1980 Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 709, 1078–1082.

    Article  Google Scholar 

  • Kloepper J W, Scher F M, Leliberte M and Tipping B 1986 Emergence-promoting rhizobacteria: Description and implications for agriculture. In Iron, Siderophores and Plant Disease. Ed. T R Swinburne, pp 155–164. Plenum, New York.

    Chapter  Google Scholar 

  • Krasilnikov N A 1934 The effect of root excretions on the growth of Azotobacter and other soil microbes. Microbiology (USSR) 3, 3.

    Google Scholar 

  • Krasilnikov N A 1958 Soil microorganisms and higher plants. Acad. Sci. USSR Moscow, 474 p. (Translated in 1961 for the NSF, USDA and The Israel Program for Scientific Translations.)

    Google Scholar 

  • Lifshitz R, Liftshitz S and Baker R 1985 Decrease in the incidence of Rhizoctonia preemergence damping off by use of integrated chemical and biological controls. Plant Dis. 69, 431–434.

    Article  Google Scholar 

  • Lochhead A G and Chase F E 1943 Qualitative studies of soil microorganisms: V. Nutritional requirements of the predominant bacterial flora. Soil Sci. 55, 185–195.

    Article  Google Scholar 

  • Lochhead A G and Thexton R H 1947 Qualitative studies in soil microorganisms: VII The “rhizosphere effect” in relation to the amino acid nutrition of bacteria. Can J. Res. C, 25, 20–26.

    Article  CAS  Google Scholar 

  • Loper J E, Haack C and Schroth M N 1986 Population dynamics of soil pseudomonads in the rhizosphere of potato (Solarium tuberosum L.). Appl. Environ. Microbiol. 49, 416–422.

    Google Scholar 

  • Loutit M W and Brooks R R 1970 Rhizosphere organisms and molybdenum concentrations in plants. Soil Biol. Bio-chem. 2, 131–135.

    Article  Google Scholar 

  • Louw H A and Webley D M 1959 The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. J. Appl. Bacteriol. 22, 216–226.

    Article  CAS  Google Scholar 

  • Lynch J M 1988 Microbes are rooting for better crops. New Scientist 1610, 45–49.

    Google Scholar 

  • Lynch J M (Ed.) 1990 The Rhizosphere. John Wiley and Sons, New York. 458 p.

    Google Scholar 

  • Martin J K 1975 14C-labelled material leached from the rhizosphere of plants supplied continuously with 14CO2. Soil Biol. Biochem. 7, 395–399.

    Article  CAS  Google Scholar 

  • McDougall B M 1970 Movement of 14C-photosynthate in roots of wheat seedlings and exudation of 14C from intact roots. New Phytol. 69, 37–46.

    Article  CAS  Google Scholar 

  • McDougall B M and Rovira A D 1970 Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol. 69, 999–1003.

    Article  Google Scholar 

  • Merriman P R, Price R D, Kollmorgen J F, Piggott T and Ridge E H 1974 Effect of soil inoculation with Bacillus subtilis and Streptomyces graminis on the growth of cereals and carrots. Aust. J. Agric. Res. 25, 219–226.

    Article  Google Scholar 

  • Miller S A and Martin 1988 Molecular diagnosis of plant disease. Annu. Rev. Phytopathol. 26, 409–432.

    Article  CAS  Google Scholar 

  • Mishoustin E H and Naumova A N 1962 Bacterial fertilizers, their effectiveness and mode of action. Mikrobiologiya 31, 543–555.

    Google Scholar 

  • Newman E I and Bowen H J 1974 Patterns of distribution of bacteria on root surfaces. Soil Biol. Biochem. 6, 205–209.

    Article  Google Scholar 

  • Newman E I and Watson A 1977 Microbial abundance in the rhizosphere. Plant and Soil 48, 17–56.

    Article  Google Scholar 

  • Old K M and Nicholson T H 1975 Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytol. 74, 51–58.

    Article  Google Scholar 

  • Parke J L, Moen R, Rovira A D and Bowen G D 1986 Soil water flow affects the rhizosphere distribution of a seed-borne biological control agent, Pseudomonas fluorescens. Soil Biol. Biochem. 18, 583–588.

    Article  Google Scholar 

  • Papavizas G C, Lewis J A and Abd-El-Moity T H 1982 Evaluation of new biotypes of Trichoderma harzianum for tolerance of benomyl and enhanced biocontrol capabilities. Phytopathology 72, 126–132.

    Article  CAS  Google Scholar 

  • Rangaswami G and Balasubramanian A 1963 Release of hydrocyanic acid by sorghum roots and its influence on the rhizosphere microflora and plant pathogenic fungi. Indian J. Exp. Biol. 1, 215–217.

    Google Scholar 

  • Ridge E H and Rovira A D 1968 Microbial inoculation of wheat. Trans. 9th Congr. Int. Soc. Soil Sci. 3, 473–481.

    Google Scholar 

  • Riviere J 1959 Contribution l’étude e la rhizosphère du blé. Ann. Agron. 45, 93–337.

    Google Scholar 

  • Rovira A D 1956 A study of the development of the root surface microflora during the initial stages of plant growth. J. Appl. Bacteriol. 19, 72–79.

    Article  Google Scholar 

  • Rovira A D 1963 Microbial inoculation of plants. I. Establishment of free-living nitrogen fixers in the rhizosphere and their effects on maize, tomato and wheat. Plant and Soil 19, 304–314.

    Article  Google Scholar 

  • Rovira A D 1969 Plant root exudates. Bot. Rev. 35, 17–34.

    Article  Google Scholar 

  • Rovira A D 1973 Zones of exudation along plant roots and spatial distribution of microorganisms in the rhizosphere. Pestic. Sci. 4, 361–366.

    Article  Google Scholar 

  • Rovira A D 1985 Manipulation of the rhizosphere microflora to increase plant production. In Reviews of Rural Science 6, Biotechnology and Recombinant DNA Technology in the Animal Production Industries. Eds. R A Leng, J S F Barker, D B Adams and K J Hutchinson, pp 185–197. Univeristy of New England, Armidale, Australia.

    Google Scholar 

  • Rovira A D 1988 Ecology and management of the rhizosphere microflora. In Microbiology in Action. Eds. W G Murrell and I R Kennedy, pp 221–238. Research Studies Press Ltd, Letchworth, England and John Wiley and Sons Inc., New York.

    Google Scholar 

  • Rovira A D and Bowen G D 1966 Phosphate incorporation by sterile and non-sterile plant roots. Aust. J. Biol. Sci. 19, 1167–1169.

    CAS  Google Scholar 

  • Rovira A D and Campbell R 1975 A scanning electron microscope study of interactions between micro-organisms and Gaeumannomyces graminis (Syn. Ophiobolus graminis) on wheat roots. Microb. Ecol. 2, 177–195.

    Article  Google Scholar 

  • Rovira A D, Bowen G D and Foster R C 1983 The significance of rhizosphere microflora and mycorrhizas on plant nutrition. In Encyclopedia of Plant Physiology, New Series Vol. 15. Eds. A Lauchli and R L Bieleski. pp 61–93. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Rovira A D, Foster R C and Martin J K 1978 Origin, nature and nomenclature of the organic materials in the rhizosphere. In The Root-Soil Interface. Eds. J L Harley and R Scott-Russell, pp 1–4. Academic Press, London, England.

    Google Scholar 

  • Rovira A D, Newman E I, Bowen H J and Campbell R 1974. Quantitative assessment of the rhizosphere microflora by direct microscopy. Soil Biol. Biochem. 6, 211–216.

    Google Scholar 

  • Rubenchik L I 1963 Azotobacter and its use in agriculture. Jerusalem, Israel, Program for Scientific Translation, 179 p.

    Google Scholar 

  • Savostin P V 1941 The nature of azotogen action. Microbiology (USSR) 10, 33–41.

    Google Scholar 

  • Schank S C, Weir K L and MacRae I C 1981 Plant yield and nitrogen content of a digit grass in response to Azospiril-lum inoculation. Appl. Exp. Microbiol. 41, 342–345.

    CAS  Google Scholar 

  • Schank S C, Smith R L, Weiser G C, Zuberer D A, Boulton J H, Quesenberry K H, Tyler M E, Milam J R and Littell R C 1979. Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11, 287–295.

    Article  Google Scholar 

  • Schippers B, Bakker A W and Bakker A H M 1987 Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25, 339–358.

    Article  Google Scholar 

  • Schmidt E L, Bankole R O and Bohool B B 1968 Fluorescent antibody approach to study of rhizobia in soil. J. Bacteriol. 95, 1987–1992.

    PubMed  CAS  Google Scholar 

  • Starkey R L 1929 Some influences of the development of higher plants upon the microorganisms in the soil. I. Historical and introductory. Soil Sci. 27, 319–334.

    Article  CAS  Google Scholar 

  • Starkey R L 1938 Some influences of the development of higher plants upon the microorganisms in the soil. VI. Microscopic examination of the rhizosphere. Soil Sci. 45, 207–249.

    Article  CAS  Google Scholar 

  • Thomashow L S and Weller D M 1988 Role of antibiotics in root disease suppression by fluorescent pseudomonads. Abstr. 5th ICPP Congress, Kyoto, Japan II 7–4, 94.

    Google Scholar 

  • Thompson J A 1987 The use of agrocin-producing bacteria in the biological control of crown gall. In Innovative Approaches to Plant Disease Control. Ed. I. Chet. pp 213–228. John Wiley and Sons, New York.

    Google Scholar 

  • Tien T M, Gaskins M H and Hubbell D H 1979 Plant growth substances produced by Azospirillum brasilence and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Exp. Microbiol. 37, 1016–1024.

    CAS  Google Scholar 

  • Troudenier G 1973 The use of fluorescence microscopy for soil microorganisms. Bull. Ecol. Res. Comm. Stockholm 17, 53–59.

    Google Scholar 

  • Umali-Garcia M, Hubbell D H, Gaskins M H and Dazzo F B 1980 Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39, 219–226.

    PubMed  CAS  Google Scholar 

  • Vancura V 1961 Detection of gibberellic acid in Azotobacter cultures. Nature (Lond.) 192, 88–99.

    Article  CAS  Google Scholar 

  • Vancura V and Macura J 1960 Indole derivatives in Azotobacter cultures. Fol. Microbiol. 5, 293–297.

    Article  CAS  Google Scholar 

  • Vuurde J W L van and Elenbaas P E M 1978 Use of fluorochromes for direct observation of micro-organisms associated with wheat roots. Can. J. Microbiol. 24, 1272–1775.

    Article  PubMed  Google Scholar 

  • Waisel Y and Eshel A 1990 Plant Roots: The Hidden Half. Marcel Dekker Inc. New York. In press.

    Google Scholar 

  • Warembourg F R 1975 Le degagement de CO2 dans la rhizosphere des plantes. Soc. Bot. Fr. Colloqu. Rhizosphere. 122, 77–100.

    Google Scholar 

  • Weller D M 1988 Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

  • Weller D M and Cook R J 1983 Suppression of take-all by seed treatments with fluorescent pseudomonads. Phytopathology 73, 463–469.

    Article  Google Scholar 

  • Whipps J M and Lynch J M 1983 Substrate flow and utilization in the rhizosphere of cereals. New Phytol. 95, 605–623.

    Article  CAS  Google Scholar 

  • Whipps J M and Lynch J M 1986 The influence of the rhizosphere on crop productivity. Adv. Microb. Ecol. 9, 187–244.

    Article  Google Scholar 

  • Williamson F A and Wyn-Jones R G 1973 The influence of soil micro-organisms on growth of cereal seedlings and on potassium uptake. Soil Biol. Biochem. 5, 569–575.

    Article  CAS  Google Scholar 

  • Wright S F, Foster J G and Bennett O C 1986 Production and use of monoclonal antibodies for identification of strains of Rhizobium trifolii. Appl. Environ. Microb. 52, 119–123.

    CAS  Google Scholar 

  • Zinovyeka H K 1940 On the method of Azotobacter preparation. Mikrobiol. Z. (Kiev) 7, 85–96. (Abst. in Biol. Abst. 16, 1210, 1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Pulishers

About this chapter

Cite this chapter

Rovira, A.D. (1991). Rhizosphere research - 85 years of progress and frustration. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics