Skip to main content

Breast Cancer

  • Chapter

Part of the book series: Developments in Oncology ((DION,volume 64))

Abstract

Human breast carcinomas epitomize the observation that malignant human tumours are often more difficult to culture than the corresponding normal cells (Whitescarver, 1974; Cailleau, 1975; Whitehead, 1976; Hallowes et al., 1917). Compared with other tumours, a relatively small number of bona fide cell lines have been established from breast cancer, given the amount of effort that has been expended (see Engel and Young (1978) for review). Approximately 50 lines have been reported, of which perhaps 20 are sufficiently well-authenticated to merit continued use. The first line (BT-20) was obtained in 1958 by Lasfargues and Ozzello, but some other lines were the result of inter- and intraspecies contamination (Nelson-Rees and Flandermeyer, 1977; Sciciliano et al., 1979). Only a few breast cell lines have been extensively studied, MCF-7 (Soule et al., 1973) being the best known example. This too has reportedly suffered cross-contamination with other cells in some stocks (Graham et al., 1986). The relative lack of interest in many of the other lines has been partly due to their slow growth rates and also because many lack detectable hormonal responses. Some of these other lines (Table 1) do, however, have other interesting attributes, for example amplified expression of oncogenes (Kraus et al., 1987). However, the receptor status is in many instances based on data using relatively insensitive methods; some hormone-responsive lines (e.g. PMC42) have relatively low receptor levels compared with ‘classical’ estrogen receptor-positive lines such as MCF-7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E.F., Newton, C.J., Tait, G.H., Braunsberg, H., Reed, M.J. and James, V.H.T. (1988). Paracrine influence of human breast stromal fibroblasts on breast epithelial cells. Int. J. Cancer 42: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, R.C. and Rosenau, W. (1978). Co-cultivation of human primary breast carcinomas and embryonic mesenchyme resulting in growth and maintenance of tumor cells. Cancer Res. 38: 894–900.

    PubMed  CAS  Google Scholar 

  • Bailey, M.J., Gazet, J-C., and Peckham, M.J. (1980). Human breast cancer xenografts in immune suppressed mice. Br. J. Cancer 42: 524–529.

    Article  PubMed  CAS  Google Scholar 

  • Beeby, D.I., Easty, G.C., Gazet, J-C. and Neville, A.M. (1975). An assessment of the effects of hormones on short term organ cultures of human breast carcinomas. Br. J. Cancer 31: 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Besch, G.J., Tanner, M.A., Howard, S.P., Wolberg, W.H. and Gould, M.N. (1986). Systematic optimization of the clonal growth of human primary breast carcinoma cells. Cancer Res. 46: 2306–2313.

    PubMed  CAS  Google Scholar 

  • Bindal, R.D., Carlsen, K.E., Katzenellenbogen, B.S., and Katzenellenbogen, J.A. (1988). Lipophilic impurities, not phenolsulfonphthalein, account for the estrogenic activity in commercial preparations of phenol red. J. Steroid. Biochem. 31: 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Briand, P., Petersen, O.W. and Van Deurs, B. (1987). A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Dev. Biol. 23: 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Buehring, G.C. and Hackett, A.J. (1974). Human breast tumor cell lines: identity evaluation by ultrastructure. JNCI 53: 621–629.

    PubMed  CAS  Google Scholar 

  • Cailleau, R.M. (1975). Old and new problems in human tumor cell cultivation. In: Human Tumor Cells In Vitro, J. Fogh (ed) Plenum Press, New York, pp. 69–114.

    Google Scholar 

  • Cailleau, R., Young, R., Olive, M. and Reeves, W.J. (1974). Breast tumor cell lines from pleural effusions. JNCI 53: 661–673.

    PubMed  CAS  Google Scholar 

  • Calvo, F., Brower, M. and Carney, D.N. (1984). Continuous culture and soft-agarose cloning of multiple human breast carcinoma cell lines in serum-free medium. Cancer Res. 44: 4553–4559.

    PubMed  CAS  Google Scholar 

  • Darbre, P.D. and Daley, R. J. (1989). Effects of oestrogen on human breast cancer cells in culture. Proc. Roy. Soc. (Edin.) 95B, 119–132.

    Google Scholar 

  • Dickson, R.B. and Lippman, M.E. (1987). Estrogenic regulation of growth and polypeptide growth factor secretion in human breast cancer. Endocrine Rev. 8: 29–43.

    Article  CAS  Google Scholar 

  • Edwards, P.A.W., Brooks, I.M., Bunnage, H.J., Foster, A.V., and O’Hare, M.J. (1986). Clonal analysis of expression of epithelial antigens in cultures of normal human breast. J. Cell Sci. 80: 91–101.

    PubMed  CAS  Google Scholar 

  • Emerman, J.T., Fiedler, E.E., Tocher, A.W. and Rebbeck, P.M. (1987). Effects of defined medium, fetal bovine serum, and human serum on growth and chemosensitivities of human breast cancer cells in primary culture; inference for in vitro assays. In Vitro, Cell. Dev. Biol. 23: 134–140.

    Article  CAS  Google Scholar 

  • Engel, L.W. and Young, N.A. (1978). Human breast carcinoma cells in continuous culture: a review. Cancer Res. 38:4327–4339.

    PubMed  CAS  Google Scholar 

  • Engel, L.W., Young, N.A., Tralka, T.S., Lippman, M.E., O’Brien, S.J. and Joyce, M.J. (1978). Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 38: 3352–3364.

    PubMed  CAS  Google Scholar 

  • Esber, H.J., Payne, I.J. and Bogden, A.E. (1973). Variability of hormone concentrations and ratios in commercial sera used for tissue culture. JNCI 50: 559–562.

    PubMed  CAS  Google Scholar 

  • Erwin, P.R., Kaminski, M.S., Cody, R.L. and Wicha, M.S. (1989). Production of mammastatin, a tissue-specific growth inhibitor, by normal human mammary cells. Science 244: 1585–1587.

    Article  Google Scholar 

  • Filmus, J., Pollak, M.N., Cailleau, R. and Buick, R.N. (1985). MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem. Biophys. Res. Commun. 128: 898–905.

    Article  PubMed  CAS  Google Scholar 

  • Gaffney, E.V. (1982). A cell line (HBL-100) established from human milk. Cell Tissue Res. 227: 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Graham, K.A., Trent, J.M., Osborne, C.K., McGrath, C.M., Minden, M.D. and Buick, R.N. (1986). The use of restriction fragment polymorphisms to identify the cell line MCF-7. Breast Cancer Res. Treat. 8: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Gusterson, B.A., Edwards, P.A.W., Foster, C.S. and Neville, A.M. (1982). The selective culture of keratinocytes using a cytotoxic antifibroblast monoclonal antibody. Brit. J. Dermatol. 105: 273–277.

    Article  Google Scholar 

  • Gusterson, B.A., Monaghan, P., Mahendran, R., and O’Hare, M.J. (1986). Identification of myoepithelial cells in human and rat breasts by anti Common Acute Lymphoblastic Leukemia Antigen antibody A12. JNCI, 77: 343–349.

    PubMed  CAS  Google Scholar 

  • Hackett, A.J., Smith, H.S., Springer, E.L., Owens, R.B., Nelson-Rees, W.A., Riggs, J.L. and Gardner, M.B. (1977). Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. JNCI 58:1795–1806.

    PubMed  CAS  Google Scholar 

  • Hallowes, R.C., Millis, R., Piggot, D., Shearer, M., Stoker, M.G. and Taylor-Papadimitriou, J. (1977). Results on a pilot study of cultures of human lacteal secretions and benign and malignant breast tumours. Clin. Oncol. 3: 81–90.

    PubMed  CAS  Google Scholar 

  • Hammond, S.L., Ham, R.S. and Stampfer, M.R. (1984). Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Nat. Acad. Sci., USA 81: 5435–5439.

    Article  CAS  Google Scholar 

  • Hirohashi, S., Shimosato, Y., Nagai, K. and Tsunematsu, R. (1976). Human breast cancer serially transplantable in nude mice in ascites form. Gann 67: 431–436.

    PubMed  CAS  Google Scholar 

  • Horwitz, K.B., Zava, D.T., Thilager, A.K., Jensen, E.M. and McGuire, W.L. (1978). Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res. 38: 2434–2437.

    PubMed  CAS  Google Scholar 

  • Imai, Y., Leung, C.H.K., Freisen, H.C. and Shiu, R.P.O. (1982). Epidermal growth factor receptors and effect of epidermal growth factor on growth of human breast cancer cells in long-term tissue culture. Cancer Res. 42: 4394–4398.

    PubMed  CAS  Google Scholar 

  • Karey, K.P. and Sirbasku, D.A. (1987). Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17-β-estradiol. Cancer Res. 48: 4083–4092.

    Google Scholar 

  • Kenny, A.F., O’Hare, M.J. and Gusterson, B.A. (1989). Cell-surface peptidases as modulators of growth and differentiation. Lancet ii, pp. 785–787.

    Article  Google Scholar 

  • Keydar, I., Chen, L., Karby, S., Weiss, F.R., Delarea, J., Radu, M., Chaitcik, S. and Brenner, H.J. (1979). Establishment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer 15: 659–670.

    Article  PubMed  CAS  Google Scholar 

  • Kljever-Anderson, P. and Buehring, G.C. (1980). Effects of hormones on growth rates of malignant and non-malignant human mammary epithelia in cell cultures. In Vitro 20: 491–501.

    Article  Google Scholar 

  • Knabbe, C., Lippman, M.E., Wakefield, L.M., Flanders, K.C., Kasid, A., Derynk, R. and Dickson, R.B. (1987). Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, M.H., Popescu, N.C., Amsbaugh, C. and King, C.R. (1987). Overexpression of the EGF receptor related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610.

    PubMed  CAS  Google Scholar 

  • Langlois, A.J., Holder, W.D., Inglehart, J.D., Nelson-Rees, W.A., Wells, S.A. and Bolognesi, D.P. (1979). Morphological and biochemical properties of a new human breast cancer cell line. Cancer Res 29: 2604–2613.

    Google Scholar 

  • Lasfargues, E.Y. and Ozzello, L. (1958). Cultivation of human breast carcinomas. JNCI 21: 1131–1147.

    PubMed  CAS  Google Scholar 

  • Lasfargues, E.Y., Coutinho, W.G. and Redfield, E.S. (1978). Isolation of two human tumor epithelial cell lines from solid breast carcinomas. JNCI 61: 967–978.

    PubMed  CAS  Google Scholar 

  • Meyer, J.S. and Bauer, W.C. (1976). Tritiated thymidine labelling index of benign and malignant human breast epithelium. J. Surg. Oncol. 8: 165–181.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, P., Whitehead, R.H., Perusinghe, N. and O’Hare, M. J. (1985). An immunocytochemical and ultrastructural study of heterogeneity in human breast carcinoma cell line PMC 42. Cancer Res. 45: 5088–5097.

    PubMed  CAS  Google Scholar 

  • Nelson-Rees, W.A. and Flandermeyer, R.R. (1977). Inter-and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, M. and Sirbasku, D.A. (1988). A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell. Dev. Biol. 24: 911–920.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare, M.J., Ormerod, M.G., Monaghan, P., Cooper, C.S., and Gusterson, B.A. (1989). Differentiation and growth in the human breast parenchyma. Biochem. Soc. Trans. 17: 589–591.

    Google Scholar 

  • Osborne, C.K., Bolan, G., Monaco, M.E. and Lippman, M.E. (1978). Hormone responsive human breast cancer in long term tissue culture: effect of insulin. Proc. Nat. Acad. Sci, USA. 73: 4536–4540.

    Article  Google Scholar 

  • Osborne, C.K., Hobbs, K. and Trent, J.M. (1987). Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res. Treat. 9: 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, C.K., Monaco, M.E., Khan, C.R., Huff, K., Bronzert, D. and Lippman, M.E. (1979). Direct inhibition of growth and antagonism of insulin action by glucocorticoids in human breast cancer cells in culture. Cancer Res. 39: 2422–2428.

    PubMed  CAS  Google Scholar 

  • Peres, R., Betholtz, C., Westermark, B. and Heldin, C.H. (1987). Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines. Cancer Res. 47: 3425–3429.

    PubMed  CAS  Google Scholar 

  • Poulsen, H.S., Bichel, P. and Andersen, J. (1982). Short-term culture of human breast cancer: in vitro effects of hormones related to patient response. Br. J. Cancer 46: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Reddel, R.R. and Sutherland, R.L. (1987). Effects of pharmacological concentrations of estrogens on proliferation and cell cycle kinetics of human breast cancer cell lines in vitro. Cancer Res. 47: 5323–5329.

    PubMed  CAS  Google Scholar 

  • Rodgers, C.S., Hill, S.M. and Hulten, M.A. (1984). Cytogenetic analysis in human breast carcinoma. Cancer Genet. Cytogenet. 13: 95–119.

    Article  PubMed  CAS  Google Scholar 

  • Rudland, P.S., Hallowes, R.C., Cox, S.A., Ormerod, E.J. and Warburton, M.J. (1985). Loss of production of myoepithelial cells and basement membrane proteins but retention of responsiveness to certain growth factors and hormones by a new malignant human breast cancer cell strain. Cancer Res. 45: 3864–3877.

    PubMed  CAS  Google Scholar 

  • Sandbach, J., Von Hoff, D.D., Clark, G., Cruz, A.B. and O’Brien, M. (1982). Direct cloning of human breast cancer in soft agar culture. Cancer 50: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  • Sciciliano, M.J., Barker, P.E. and Cailleau, R.M. (1979). Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker. Cancer Res. 39: 919–922.

    Google Scholar 

  • Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C. and Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. JNCI 63: 1331–1337.

    PubMed  CAS  Google Scholar 

  • Sloane, J.P. and Ormerod, M.G. (1981). Distribution of epithelial membrane antigen in normal and neoplastic tissues and its value in diagnostic tumor pathology. Cancer 47: 1786–1795.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H.S., Lan, S., Ceriani, R., Hackett, A.J. and Stampfer, M.R. (1981). Clonal proliferation of cultured non-malignant and malignant human breast epithelia. Cancer Res. 41: 4637–4643.

    PubMed  CAS  Google Scholar 

  • Soule, H.D., Vasquez, J., Long, A., Albert, S. and Brennan, M. (1973). A human breast cancer cell line from a pleural effusion derived from a breast carcinoma. JNCI 51: 1409–1416.

    PubMed  CAS  Google Scholar 

  • Stampfer, M.R. (1982). Cholera toxin stimulation of human mammary epithelial cells in culture. In Vitro 18: 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Stampfer, M.R. and Bartley, J.C. (1985). Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo(a)pyrene. Proc. Nat. Acad. Sci., USA 82: 2394–2398.

    Article  CAS  Google Scholar 

  • Whitehead, R.H. (1976). The culture of tumour cells from tumour biopsies. Clin. Oncol. 2: 131–140.

    PubMed  CAS  Google Scholar 

  • Whitehead, R.H., Bertoncello, J., Webber, L.M. and Pedersen, J.S. (1983). A new human breast carcinoma cell line (PMC 42) with stem cell characteristics. 1. Morphological characterization. JNCI 70:649–661.

    PubMed  CAS  Google Scholar 

  • Whitescarver, J. (1974). Problems of in vitro culture of human mammary tumor cells. J. Invest. Dermatol. 63: 58–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Hare, M.J. (1991). Breast Cancer. In: Masters, J.R.W. (eds) Human Cancer in Primary Culture, A Handbook. Developments in Oncology, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3304-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3304-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5459-1

  • Online ISBN: 978-94-011-3304-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics