Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 41))

Abstract

Some reflection on the preceding chapters indicates that the Dirac equation, even modified to include external fields, is not yet complete. One of the major lessons of classical electrodynamics is that accelerated charged particles radiate (though this is not necessarily true for all charge distributions), and energy conservation alone requires the dynamical equations of motion to account for this phenomenon. Although we have paid lip service to such a requirement in Eqs.(3–110)-(3–113), a detailed study can be postponed no longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerhalt, J.R., P.L. Knight, and J.H. Eberly: 1973, ‘Radiation Reaction and Radiative Frequency Shifts’, Phys. Rev. Lett. 30, 456.

    Article  ADS  Google Scholar 

  • Aitchison, I.J.R.: 1985, ‘Nothing’s Plenty’, Contemp. Phys. 26, 333.

    Article  ADS  Google Scholar 

  • Allen, L., and J.H. Eberly: 1975, Optical Resonance and Two-Level Atoms, Wiley, New York.

    Google Scholar 

  • Andrews, D.A., and G. Newton: 1976, ‘Radio Frequency Atomic Beam Measurement of the \( \left( {{2^2}{S_{{\frac{1}{2}}}}, \,F = 0} \right) - \left( {{2^2}{P_{{\frac{1}{2}}}}\,F = 1} \right) \) Lamb-Shift Interval’, Phys. Rev. Lett. 37, 1254.

    Article  ADS  Google Scholar 

  • Bailey, J., K. Borer, F. Combley, H. Drumm, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, F. Krienen, F. Lange, E. Picasso, and W. Von Rüden: 1977, ‘The Anomalous Magnetic Moment of Positive and Negative Muons’, Phys. Lett. 68B, 191.

    ADS  Google Scholar 

  • Barton, G.: 1974, ‘Frequency Shifts Near an Interface: Inadequacy of Two-Level Atomic Models’, J. Phys. B 7, 2134.

    Article  ADS  Google Scholar 

  • Barut, A.O.: 1968, ‘Reformulation of the Dirac Theory of the Electron’, Phys. Rev. Lett. 20, 893.

    Article  ADS  Google Scholar 

  • Barut, A.O., and J.P. Dowling: 1987, ‘Quantum Electrodynamics Based on Self-Energy without Second Quantization: The Lamb Shift and Long-Range Casimir-Polder van der Waals Forces Near Boundaries’, Phys. Rev. A 36, 2550.

    Article  ADS  Google Scholar 

  • Barut, A.O., and Y.I. Salamin: 1988, ‘Relativistic Theory of Spontaneous Emission’, Phys. Rev. A 37, 2284.

    Article  ADS  Google Scholar 

  • Bell, J.S.: 1987, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Bethe, H.A.: 1947, ‘The Electromagnetic Shift of Energy Levels’, Phys. Rev. 72, 339.

    Article  ADS  MATH  Google Scholar 

  • Bethe, H.A., and E.E. Salpeter: 1977, Quantum Mechanics of One- and Two-Electron Atoms, Plenum Press, New York.

    Book  Google Scholar 

  • Berestetskii, V.B., E.M. Lifshitz, and L.P Pitaevskii: 1982, Quantum Electrodynamics, Pergamon Press, Oxford.

    Google Scholar 

  • Bjorken, J.D., and S.D. Drell: 1964, Relativistic Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Bjorken, J.D., and S.D. Drell: 1965, Relativistic Quantum Fields, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Bloch, F.: 1946, ‘Nuclear Induction’, Phys. Rev. 70, 460.

    Article  ADS  Google Scholar 

  • Bloch, F., and A. Nordsieck: 1937, ‘Note on the Radiation Field of the Electron’, Phys. Rev. 52, 54.

    Article  ADS  Google Scholar 

  • Bohr, N., and L. Rosenfeld: 1933, ‘Für Frage der Messbarkeit der elektromagnetischen Feldgrössen’, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 12, 1.

    Google Scholar 

  • Born, M., W. Heisenberg, and P. Jordan: 1926, ‘Zur Quantenmechanik. II’, Z. Phys. 35, 557.

    Article  ADS  MATH  Google Scholar 

  • Breit, G.: 1947, ‘Does the Electron Have an Intrinsic Magnetic Moment?’, Phys. Rev. 72, 984.

    Article  ADS  MATH  Google Scholar 

  • Brodsky, S.J., and S.D. Drell: 1980, ‘Anomalous Magnetic Moment and Limits on Fermion Substructure’, Phys. Rev. D 22, 2236.

    Article  ADS  Google Scholar 

  • Brown, L.M., and L. Hoddeson (eds.): 1983, The Birth of Particle Physics, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Calmet, J., S. Narison, M. Perrottet, and E. de Rafael: 1977, ‘The Anomalous Magnetic Moment of the Muon: A Review of the Theoretical Contributions’, Rev. Mod. Phys. 49, 21.

    Article  ADS  Google Scholar 

  • Casimir, H.B.G.: 1948, ‘On the Attraction between Two Perfectly Conducting Plates’, Proc. K. Nedd. Acad. Weten. 51, 793.

    MATH  Google Scholar 

  • Casimir, H.B.G., and D. Polder: 1948, ‘The Influence of Retardation on the London-van der Waals Forces’, Phys. Rev. 73, 360.

    Article  ADS  MATH  Google Scholar 

  • Chadam, J.M.: 1972, ‘On the Cauchy Problem for the Coupled Maxwell-Dirac Equations’, J. Math. Phys. 13, 597.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chow, W.W., M.O. Scully, and J.O. Stoner, Jr.: 1975, ‘Quantum Beat Phenomena Described By Quantum Electrodynamics and Neoclassical Theory’, Phys. Rev. A 11, 1380.

    Article  ADS  Google Scholar 

  • Citron, M.L., H.R. Gray, C.W. Gabel, and C.R. Stroud: 1977, ‘Experimental Study of Power Broadening in a Two-Level Atom’, Phys. Rev. A 16, 1507.

    Article  ADS  Google Scholar 

  • Crisp, M.D., and E.T. Jaynes: 1969, ‘Radiative Effects in Semiclassical Theory’, Phys. Rev. 179, 1253.

    Article  ADS  Google Scholar 

  • Dalibard, J., J.Dupont-Roc, and C. Cohen-Tannoudji: 1982, ‘Vacuum Fluctuations and Radiation Reaction: Identification of their Respective Contributions’, J. Physique 43, 1617.

    Article  Google Scholar 

  • Das, A., and D. Kay: 1989, ‘A Class of Exact Plane Wave Solutions of the Maxwell-Dirac Equations’, J. Math. Phys. 30, 2280.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davies, B., and A.N. Burkitt: 1980, ‘On the Relationship between Quantum, Random and Semiclassical Electrodynamics’, Aust. J. Phys. 33, 671.

    MathSciNet  ADS  Google Scholar 

  • Delbrück, M.: 1933, ‘Zusatz zu der Arbeit L. Meitner und H. Kösters, “Über die Streung kurzwelliger γ-Strahlen’, Z. Phys. 84, 144.

    Google Scholar 

  • Dicke, R.H.: 1954, ‘Coherence in Spontaneous Radiation Processes’, Phys. Rev. 93, 99.

    Article  ADS  MATH  Google Scholar 

  • Dirac, P.A.M.: 1927, ‘The Quantum Theory of the Emission and Absorption of Radiation’, Proc. Roy. Soc. (London) A114, 243.

    ADS  Google Scholar 

  • Dirac, P.A.M.: 1977, ‘The Relativistic Electron Wave Equation’, Europhys. News, October 1977, p.1. [Lecture Delivered at the European Conference on Particle Physics, Budapest, 4 July 1977.]

    Google Scholar 

  • Dodd, J.N.: 1983, ‘The Compton Effect—A Classical Treatment’, Eur. J. Phys. 4, 205.

    Article  Google Scholar 

  • Dorling, J.: 1987, ‘Schrödinger’s Original Interpretation of the Schrödinger Equation: A Rescue Attempt’, in C.W. Kilmister (ed.), Schrödinger, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Dyson, F.J.: 1952, ‘Divergence of Perturbation Theory in Quantum Electrodynamics’, Phys. Rev. 85, 631.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dyson, F.: 1965, ‘Tomonaga, Schwinger, and Feynman’, Science 150, 588.

    Article  ADS  Google Scholar 

  • Einstein, A.: 1917, ‘Quantentheorie der Strahlung’, Phys. Z. 18, 121.

    Google Scholar 

  • Erickson, G.W., and H. Grotch: 1988, ‘Lamb-Shift Recoil Effects in Hydrogen, Phys. Rev. Lett. 60, 2611. [Errata: Phys. Rev. Lett. 63, 1326(1989).]

    Google Scholar 

  • Fain, B.: 1982, ‘Spontaneous Emission vs. Vacuum Fluctuations’, Nuovo Cimento B68, 73.

    ADS  Google Scholar 

  • Fain, V.M., and Ya.I. Khanin: 1969, Quantum Electronics, Vol.1, M.I.T. Press, Cambridge, MA., p.211.

    Google Scholar 

  • Fermi, E.: 1932, ‘Quantum Theory of radiation’, Rev. Mod. Phys. 4, 87.

    Article  ADS  Google Scholar 

  • Fermi, E.: 1934, ‘Versuch einer Theorie der β-Strahlen.I’, Z. Phys. 88, 161.

    Article  ADS  Google Scholar 

  • Feynman, R.P.: 1985, QED, Princeton Univ. Press, Princeton.

    Google Scholar 

  • Finkelstein, R.J.: 1949, ‘On the Quantization of a Unified Field Theory’, Phys. Rev. 75, 1079.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Finkelstein, R.J., C. Fronsdal, and P. Kaus: 1956, ‘Nonlinear Spinor Field Theory’, Phys. Rev. 103, 1571.

    Article  ADS  MATH  Google Scholar 

  • French, J.B., and V.F. Weisskopf: 1949, ‘The Electromagnetic Shift of Energy Levels’, Phys. Rev. 75, 1240.

    Article  ADS  MATH  Google Scholar 

  • Frenkel, J.: 1926, ‘Die Elektrodynamik des rotierenden Elektrons’, Z. Phys. 37, 243.

    Article  ADS  MATH  Google Scholar 

  • Grammer, G., Jr., and D.R. Yennie: 1973, ‘Improved Treatment for the Infrared-Divergence Problem in Quantum Electrodynamics’, Phys. Rev. D 8, 4332.

    Article  ADS  Google Scholar 

  • Grandy, W.T., Jr.: 1970, Introduction to Electrodynamics and Radiation, Academic Press, New York, p.114.

    Google Scholar 

  • Grandy, W.T., Jr.: 1991, ‘The Explicit Nonlinearity of Quantum Electrodynamics’, in A. Weingartshofer (ed.), The Electron-1990, Kluwer, Dordrecht.

    Google Scholar 

  • Gross, L.: 1966, ‘The Cauchy Problem for the Coupled Maxwell and Dirac Equations’, Comm. Pure Appl. Math 19, 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Heber, O., B.B. Bandong, G. Sampoll, and R.L. Watson: 1990, ‘Observation of Quantum Beats in the Resonance Flourescence of Free Excitons’, Phys. Rev. Lett. 64, 854.

    Article  ADS  Google Scholar 

  • Heisenberg, W., and W. Pauli: 1929, ‘Zur Quantentheorie der Wellenfelder’, Z. Phys. 56, 1.

    Article  ADS  MATH  Google Scholar 

  • Heisenberg, W., and W. Pauli: 1930, ‘Zur Quantentheorie der Wellenfelder.II’, Z. Phys. 59, 168.

    Article  ADS  Google Scholar 

  • Hilgevoord, J., and E.A. DeKerf: 1965, ‘The Covariant Definition of Spin in Relativistic Quantum Field Theory’, Physica 31, 1002.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hilgevoord, J., and S.A. Wouthuysen: 1963, ‘On the Spin Angular Momentum of the Dirac Particle’, Nucl. Phys. 40, 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Hocker, G.B., and C.L. Tang: 1968, ‘Observation of the Optical Transient Nutation Effect’, Phys. Rev. Lett. 21, 591.

    Article  ADS  Google Scholar 

  • Houston, W.V.: 1937, ‘A New Method of Analysis of the Structure of H α and D α ’, Phys. Rev. 51, 446.

    Article  ADS  Google Scholar 

  • Itzykson, C., and J.B. Zuber: 1980, Quantum Field Theory, McGraw-Hill, New York.

    Google Scholar 

  • Jauch, J.M., and F. Rohrlich: 1955, The Theory of Photons and Electrons, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Jaynes, E.T.: 1973, ‘Survey of the Present Status of Neoclassical Radiation Theory’, in L. Mandel and E. Wolf (eds.), Coherence and Quantum Optics, Plenum Press, New York.

    Google Scholar 

  • Jaynes, E.T.: 1978, ‘Electrodynamics Today’, in L. Mandel and E. Wolf (eds.), Coherence and Quantum Optics IV, Plenum Press, New York.

    Google Scholar 

  • Jaynes, E.T.: 1980, ‘Quantum Beats’, in A.O. Barut (ed.), Foundations of Radiation Theory and Quantum Electrodynamics, Plenum Press, New York.

    Google Scholar 

  • Jaynes, E.T.: 1990, ‘Probability in Quantum Theory’, in W.H. Zurek (ed.), Complexity, Entropy, and the Physics of Information, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Jaynes, E.T., and F.W. Cummings: 1963, ‘Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser’, Proc. IEEE 51, 89.

    Article  Google Scholar 

  • Jordan, P.: 1928, ‘Der Charakter der Quantenphysik’, Naturwiss. 41, 765.

    Article  ADS  Google Scholar 

  • Jordan, P., and E. Wigner: 1928, ‘Über das Paulische Äquivalenzverbot’, Z. Phys. 47, 631.

    Article  ADS  MATH  Google Scholar 

  • Kaempffer, F.A.: 1955, ‘Elementary Particles as Self-Maintained Excitations’, Phys. Rev. 99, 1614.

    Article  ADS  Google Scholar 

  • Karplus, R., and N.M. Kroll: 1950, ‘Fourth Order Corrections in Quantum Electrodynamics and the Magnetic Moment of the Electron’, Phys. Rev. 77, 536.

    Article  ADS  MATH  Google Scholar 

  • Kim, Y.S., and M.E. Noz: 1986, Theory and Applications of the Poincaré Group, Reidel, Dordrecht.

    Book  Google Scholar 

  • Kimble, H.J., and L. Mandel: 1975, ‘Problem of Resonance Flourescence and the Inadequacy of Spontaneous Emission as a Test of Quantum Electrodynamics’, Phys. Rev. Lett. 34, 1485.

    Article  ADS  Google Scholar 

  • Kinoshita, T.: 1989, ‘Electron g — 2 and High Precision Determination of α’, in G.F. Bassani, M. Inguscio, and T.W. Hänsen (eds.), The Hydrogen Atom, Springer-Verlag, Berlin.

    Google Scholar 

  • Kinoshita, T., and W.B. Lindquist: 1983a, ‘Eighth-Order Magnetic Moment of the Electron.I. Second-Order Vertex Containing Second-, Fourth-, and Sixth-Order Vacuum Polarization Subdiagrams’, Phys. Rev. D 27, 867.

    Article  ADS  Google Scholar 

  • Kinoshita, T., and W.B. Lindquist: 1983b, ‘Eighth-Order Magnetic Moment of the Electron.II. Fourth-Order Vertices Containing Second- and Fourth-Order Vacuum Polarization Subdiagrams’, Phys. Rev. D 27, 877.

    Article  ADS  Google Scholar 

  • Kinoshita, T., and W.B. Lindquist: 1983c, ‘Eighth-Order Magnetic Moment of the Elec-tron.III. Sixth-Order Vertices Containing a Second-Order Vacuum Polarization Sub-diagram’, Phys. Rev. D 27, 886.

    Article  ADS  Google Scholar 

  • Klein, O.: 1927, ‘Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespodenzprinzips’, Z. Phys. 41, 407.

    Article  ADS  MATH  Google Scholar 

  • Klein, O., and Y. Nishina: 1929, ‘Über die Streung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac’, Z. Phys. 52, 853.

    Article  ADS  MATH  Google Scholar 

  • Kramers, H.A.: 1938, ‘Die Wechselwirkung zwischen geladenen Teilschen und Strahlungsfeld’, Z. Phys. 63, 54.

    Google Scholar 

  • Kramers, H.A., and W. Heisenberg: 1925, ‘Über die Streung von Strahlung durch Atome’, Z. Phys. 31, 681.

    Article  ADS  MATH  Google Scholar 

  • Kurnit, N.A., I.D. Abella, and S.R. Hartmann: 1964, ‘Observation of a Photon Echo’, Phys. Rev. Lett. 13, 567.

    Article  ADS  Google Scholar 

  • Kusch, P., and H.M. Foley: 1947, ‘Precision Measurement of the ‘g Values’ in the 2 P 3/2 and 2 P 1/2 States of Gallium’, Phys. Rev. 72, 1256.

    Article  ADS  Google Scholar 

  • Lamb, G.L., Jr.: 1971, ‘Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium’, Rev. Mod. Phys. 43, 99.

    Article  MathSciNet  ADS  Google Scholar 

  • Lamb, W.E., Jr.: 1964, ‘Theory of an Optical Maser’, Phys. Rev. 134, A1429.

    Article  ADS  Google Scholar 

  • Lamb, W.E., Jr., and R.C. Retherford: 1947, ‘Fine Structure of the Hydrogen Atom by a Microwave Method’, Phys. Rev. 72, 241.

    Article  ADS  Google Scholar 

  • Lamb, W.E., Jr., and M.O. Scully: 1969, ‘The Photoelectric Effect without Photons’, in Société Francaise de Physique (ed.), Polarisation, matiere et rayonnement, Presses Univ. de France, Paris.

    Google Scholar 

  • Lanyi, G.: 1973, ‘Classical Electromagnetic Radiation of the Dirac Electron’, Phys. Rev. D 8, 3413.

    Article  ADS  Google Scholar 

  • Lautrup, B.E., A. Peterman, and E. de Rafael: 1972, ‘Recent Developments in the Comparison between Theory and Experiments in Quantum Electrodynamics’, Phys. Repts. 3, 193.

    Article  ADS  Google Scholar 

  • Levine, M.J., and R. Roskies: 1976, ‘Analytic Contribution to the g Factor of the Electron in Sixth Order’, Phys. Rev. D. 14, 2191.

    Article  ADS  Google Scholar 

  • Lewis, G.N.: 1926, ‘The Conservation of Photons’, Nature 118, 874.

    Article  ADS  Google Scholar 

  • Lloyd, S.P.: 1950, ‘Elimination of the Self-Electromagnetic Field’, Phys. Rev. 77, 757(A).

    MathSciNet  Google Scholar 

  • London, F.: 1926, ‘Zur Theorie und Systematik den Molekularkräfte’, Z. Phys. 63, 245.

    ADS  Google Scholar 

  • Loudon, R., and P.L. Knight: 1987, ‘Squeezed Light’, J. Mod. Opt. 34, 709.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lundeen, S.R., and F.M. Pipkin: 1981, ‘Measurement of the Lamb Shift in Hydrogen, n = 2’, Phys. Rev. Lett. 46, 232.

    Article  ADS  Google Scholar 

  • Luttinger, J.M.: 1948, ‘A Note on the Magnetic Moment of the Electron’, Phys. Rev. 74, 893.

    Article  ADS  MATH  Google Scholar 

  • Mahanty, J.: 1974, ‘A Semi-Classical Theory of Dispersion Energy of Atoms and Molecules’, Nuovo Cimento 22B, 110.

    ADS  Google Scholar 

  • McCall, S.L., and E.L. Hahn: 1967, ‘Self-Induced Transparency by Pulsed Coherent Light’, Phys. Rev. Lett. 18, 908.

    Article  ADS  Google Scholar 

  • Milonni, P.W.: 1976, ‘Semiclassical and Quantum-Electrodynamical Approaches in Non-relativistic Radiation Theory’, Phys. Repts. 25, 1.

    Article  ADS  Google Scholar 

  • Milonni, P.W.: 1984, ‘Why Spontaneous Emission?’, Am. J. Phys. 52, 340.

    Article  ADS  Google Scholar 

  • Milonni, P.W., J.R. Ackerhalt, and W.A. Smith: 1973, ‘Interpretation of Radiative Corrections in Spontaneous Emission’, Phys. Rev. Lett. 31, 958.

    Article  ADS  Google Scholar 

  • Nafe, J.E., E.B. Nelson, and I.I. Rabi: 1947, ‘The Hyperfine Structure of Atomic Hydrogen and Deuterium’, Phys. Rev. 71, 914.

    Article  ADS  Google Scholar 

  • Nagel, D.E., R.S. Julian, and J.R Zacharias: 1947, ‘Hyperfine Structure of Atomic Hydrogen and Deuterium’, Phys. Rev. 72, 971.

    Article  ADS  Google Scholar 

  • Pal’chikov, G., Yu.L. Sokolov, and V.P. Yakovlev: 1983, ‘Lifetime of the 2P State and Lamb Shift in the Hydrogen Atom’, JETP Lett 38, 418.

    ADS  Google Scholar 

  • Pasternak, S.: 1938, ‘Note on the Fine Structure of H α and D α ’, Phys. Rev. 54, 1113.

    Article  ADS  Google Scholar 

  • Power, E.A.: 1964, Introductory Quantum Electrodynamics, American Elsevier, New York.

    MATH  Google Scholar 

  • Power, E.A.: 1966, ‘Zero-Point Energy and the Lamb Shift’, Am. J. Phys. 34, 516.

    Article  ADS  Google Scholar 

  • Scharf, G.: 1989, Finite Quantum Electrodynamics, Springer-verlag, Berlin.

    Book  Google Scholar 

  • Schiff, L.I.: 1955, Quantum Mechanics, 2nd ed., McGraw-Hill, New York.

    MATH  Google Scholar 

  • Schrödinger, E.: 1926, ‘Quantisierung als Eigenwertproblem’, Ann. d. Phys. 79, 361.

    Article  MATH  Google Scholar 

  • Schrödinger, E.: 1927, ‘Energieaustauch nach der Wellenmechanik’, Ann. d. Phys. 83, 956.

    Article  MATH  Google Scholar 

  • Schwarz, C.L., and J.J. Tiemann: 1959, ‘New Calculation of the Numerical Value of the Lamb Shift’, Ann. Phys. (N.Y.) 6, 178.

    Article  ADS  Google Scholar 

  • Schweber, S.S.: 1961, An Introduction to Relativistic Quantum Field Theory, Row, Peterson, Evanston, IL.

    Google Scholar 

  • Schwinger, J.: 1948, ‘On Quantum-ELectrodynamics and the Magnetic Moment of the Electron’, Phys. Rev. 73, 416.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schwinger, J. (ed.): 1958, Quantum Electrodynamics, Dover, New York.

    MATH  Google Scholar 

  • Schwinger, J., L.L. De Raad, Jr., and K.A. Milton: 1978, ‘Casimir Effect in Dielectrics’, Ann. Phys. (N.Y.) 115, 1..

    Article  ADS  Google Scholar 

  • Senitsky, I.R.: 1973, ‘Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics’, Phys. Rev. Lett. 31, 955.

    Article  ADS  Google Scholar 

  • Senitsky, I.R.: 1978, ‘The Quantum Mechanical Foundations of Semiclassical Radiation Theories’, in L. Mandel and E. Wolf (eds.), Coherence and Quantum Optics IV, Plenum Press, New York.

    Google Scholar 

  • Serber, R.: 1935, ‘Linear Modifications in the Maxwell Field Equations’, Phys. Rev. 48, 49.

    Article  ADS  Google Scholar 

  • Sommerfleld, C.M.: 1957, ‘Magnetic Dipole Moment of the Electron’, Phys. Rev. 107, 328.

    Article  ADS  Google Scholar 

  • Stroud, C.R., Jr., and E.T. Jaynes: 1970, ‘Long-Term Solutions in Semiclassical Radiation Theory’, Phys. Rev. A 1, 106.

    Article  ADS  Google Scholar 

  • Synge, J.L.: 1954, ‘On the Transfer of Energy between Electromagnetic Bodies’, Proc. Roy. Irish Acad. 56, 1.

    MathSciNet  Google Scholar 

  • Teller, P.: 1988, ‘Three Problems of Renormalization’, in H.R. Brown and R. Harré (eds.), Philosophical Foundations of Quantum Field Theory, Clarendon Press, Oxford.

    Google Scholar 

  • Uehling, E.A.: 1935, ‘Polarization Effects in the Positron Theory’, Phys. Rev. 48, 55.

    Article  ADS  MATH  Google Scholar 

  • Van Dyck, R.S., Jr., P.B. Schwinberg, and H.G. Dehmelt: 1987, ‘New High-Precision Comparison of Electron and Positron g Factors’, Phys. Rev. Lett. 59, 26.

    Article  ADS  Google Scholar 

  • Walls, D.F.: 1979, ‘Evidence for the Quantum Nature of Light’, Nature 280, 451.

    Article  ADS  Google Scholar 

  • Weingard, R.: 1988, ‘Virtual Particles and the Interpretation of Quantum Field Theory’, in H.R. Brown and R. Harré (eds.), Philosophical Foundations of Quantum Field Theory, Clarendon Press, Oxford.

    Google Scholar 

  • Weisskopf, V.: 1936, ‘Über die Elektrodynamik des vakuums auf grund der Quantentheorie des Elektrons’, Kon. Dan. Vid. Sel. Mat.-Fys. Medd. 15, No.6.

    Google Scholar 

  • Weisskopf, V., and E.P. Wigner: 1930, ‘Linienbriete auf Grund der Diracschen Lichttheorie’, Z. Phys. 63, 54.

    Article  ADS  MATH  Google Scholar 

  • Welton, T.A.: 1948, ‘Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field’, Phys. Rev. 74, 1157.

    Article  ADS  MATH  Google Scholar 

  • Wentzel, G.: 1927, ‘Über die Richtungsverteilung der Photoelektronen’, Z. Phys. 41, 828.

    Article  ADS  MATH  Google Scholar 

  • Williams, R.C.: 1938, ‘The Fine Structures of Hα and Dα Under Varying Discharge Conditions’, Phys. Rev. 54, 558.

    Article  ADS  Google Scholar 

  • Wódkiewicz, K.: 1980, ‘Resonance Flourescence and Spontaneous Emission as Test of QED’, in A.O. Barut (ed.), Foundations of Radiation Theory and Quantum Electrodynamics, Plenum Press, New York.

    Google Scholar 

  • Yennie, D.R., S.C. Frautschi, and H. Suura: 1961, ‘The Infrared Divergence Phenomena and High-Energy Processes’, Ann. Phys. (N.Y.) 13, 379.

    Article  ADS  Google Scholar 

  • Zwanziger, D.: 1979, ‘Infrared Catastrophe Averted by Hertz Potential’, Phys. Rev. D 19, 3614.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grandy, W.T. (1991). Quantum Theory of Radiation. In: Relativistic Quantum Mechanics of Leptons and Fields. Fundamental Theories of Physics, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3302-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3302-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5458-4

  • Online ISBN: 978-94-011-3302-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics