Skip to main content

Mechanisms of iron acquisition from siderophores by microorganisms and plants

  • Chapter
Iron Nutrition and Interactions in Plants

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 43))

Abstract

Most bacteria, fungi, and some plants respond to Fe stress by the induction of high-affinity Fe transport systems that utilize biosynthetic chelates called siderophores. To competitively acquire Fe, some microbes have transport systems that enable them to use other siderophore types in addition to their own. Bacteria such as Escherichia coli achieve this ability by using a combination of separate siderophore receptors and transporters, whereas other microbial species, such as Streptomyces pilosus, use a low specificity, high-affinity transport system that recognizes more than one siderophore type. By either strategy, such versatility may provide an advantage under Fe-limiting conditions; allowing use of siderophores produced at another organism’s expense, or Fe acquisition from siderophores that could otherwise sequester Fe in an unavailable form.

Plants that use microbial siderophores may also be more Fe efficient by virtue of their ability to use a variety of Fe sources under different soil conditions. Results of our research examining Fe transport by oat indicate parity in plant and microbial requirements for Fe and suggest that siderophores produced by root-colonizing microbes may provide Fe to plants that can use the predominant siderophore types. In conjunction with transport mechanisms, ecological and soil chemical factors can influence the efficacy of siderophores and phytosiderophores. A model presented here attempts to incorporate these factors to predict conditions that may govern competition for Fe in the plant rhizosphere. Possibly such competition has been a factor in the evolution of broad transport capabilities for different siderophores by microorganisms and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagg A and Neilands J B 1987 Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofac-tor to bind the operator of an iron transport Operon in Escherichia coli. Biochemistry 26, 5471–5477.

    Article  PubMed  CAS  Google Scholar 

  • Becker J O, Hedges R W and Messens E 1985 Inhibitory effect of pseudobactin on the uptake of Fe by higher plants. Appl. Environ. Microbiol. 49, 1090–1093.

    PubMed  CAS  Google Scholar 

  • Bienfait H F, Van den Briel W and Mesland-Mul N T 1985 Free space iron pools in roots. Plant Physiol. 78, 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Bienfait H F 1989 Prevention of stress in iron metabolism of plants. Acta Bot. Neerl. 38, 105–129.

    CAS  Google Scholar 

  • Bossier P and Verstraete W 1986 Ecology of Arthrobacter JG-9-detectable hydroxamate siderophores in soils. Soil Biol. Biochem. 18, 487–492.

    Article  CAS  Google Scholar 

  • Bossier P and Verstraete W 1988 Ecological significance of siderophores in soil. Adv. Microbial Ecology 10, 385–414.

    Article  CAS  Google Scholar 

  • Braun V, Hantke K, Eick-Helmerich K, Koster W, Presler U, Sauer M, Schaffer S, Schoffler H, Staudenmaier H and Zimmermann L 1987 Iron transport systems in Escherichia coli. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 370–386. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Buckhout T H, Bell P F, Luster D G and Chaney R L 1989 Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiol. 90, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Carrano C J and Raymond K N 1978 Coordination chemistry of microbial iron transport compounds: Rhodotorulic acid and iron uptake in Rhodotorula pilmanae. J. Bacteriol. 136, 69–74.

    PubMed  CAS  Google Scholar 

  • Chaney R L, Brown J C and Tiffin L O 1972. Obligatory reduction of ferric chelates in iron uptake by soybean. Plant Physiol. 50, 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Clark F E and Paul E A 1970 The microflora of grassland. Adv Agron. 22, 375–435.

    Article  CAS  Google Scholar 

  • Cox C D 1980 Iron reductases from Pseudomonas aeruginosa. J Bacteriol. 141, 199–204.

    PubMed  CAS  Google Scholar 

  • Crowley D E, Reid C P P and Szaniszlo P J 1987 Microbial siderophores as iron sources for plants. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 370–386. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Crowley D E, Reid C P P and Szaniszlo P J 1988 Siderophore reduction and iron transport by membrane vesicles from oat roots. Abstract N100, p 261 Am. Soc. Microbial. Ann. Meeting, Miami, FL.

    Google Scholar 

  • Crowley D E, Reid C P P and Szaniszlo P J 1988 Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol. 87, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Crowley D E, Carrano C and P J Szaniszlo 1989 Shuttlemediated siderophore iron uptake by oat roots. Abstract N63, p 295. Am. Soc. Microbiol. Ann. Meetings, New Orleans, LA.

    Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere. Springer-Verlag, New York, 228 p.

    Book  Google Scholar 

  • Earhart C F 1987 Ferrienterobactin transport in Escherichia coli. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 67–84. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Ecker D J and Emery T 1983 Iron uptake from ferrichrome A and iron citrate in Ustilago sphaerogena. J. Bacteriol. 155, 616–622.

    PubMed  CAS  Google Scholar 

  • Emery T 1987 Reductive mechanisms of iron assimilation. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 370–386. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Ernst J F, Bennet R L and Rothfield 1978 Constitutive expression of the iron enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typimurium. J Bacteriol. 135, 928–934.

    PubMed  CAS  Google Scholar 

  • Fischer E, Gunter K and Braun V 1989 Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J. Bacteriol. 171, 5127–5134.

    PubMed  CAS  Google Scholar 

  • Frost G E and Rosenberg H 1973 The inducible citrate dependent iron transport system in Escherichia coli K-12. Biochem. Biophys. Acta 330, 90–101.

    Article  PubMed  CAS  Google Scholar 

  • Hantke K 1987 Ferrous iron transport mutants in Escherichia coli K-12. FEMS Microbiol. Lett. 44, 53–57.

    Article  CAS  Google Scholar 

  • Huschka H, Naegeli H U, Leuenberger-Ryf H, Keller-Schierlein W and Winkelmann G 1985 Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. J. Bacteriol. 162, 715–721.

    PubMed  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y and Chen Y 1986 The remedy of lime-induced chlorosis in peanuts by Pseudomonas sp. siderophores. J. Plant Nutr. 9, 535–545.

    Article  Google Scholar 

  • Jurkevitch E, Hadar Y and Chen Y 1988 Involvement of bacterial siderophores in the remedy of lime-induced chlorosis in peanut. Soil Sci. Soc. Am. J. 52, 1032–1037.

    Article  CAS  Google Scholar 

  • Kawai S, Takagi S and Sato Y 1988 Mugineic acid-family phytosiderophores in root-secretions of barley, corn, and sorghum varieties. J. Plant Nutr. 11, 633–642.

    Article  CAS  Google Scholar 

  • Leong J 1986 Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187–209.

    Article  CAS  Google Scholar 

  • Lindsay W L and Norvell W A 1978 Development of a DPTA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428.

    Article  CAS  Google Scholar 

  • Lindsay W L 1979 Chemical Equilibria in Soils. John Wiley, New York.

    Google Scholar 

  • Lindsay W L and Schwab P 1982 The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5, 821–840.

    Article  CAS  Google Scholar 

  • Marschner H, Treeby M and Römhled V 1988 Role of rootinduced changes in the rhizosphere for iron acquisition in higher plants. Pflanzenernaehr. Bodenkd. 152, 197–204.

    Article  Google Scholar 

  • Matzanke B F, Muller G I and Raymond K N 1984 Hydroxamate siderophore mediated iron uptake in E. coli: Stereospecific recognition of ferric rhodotorulic acid. Biochem. and Biophys. Research. Commun. 121, 922–930.

    Article  CAS  Google Scholar 

  • Meyer J M, Halle F, Hohnadel D, Lemanceau P and Ratefiarivelo H. 1987. Siderophores of Pseudomonasbiological properties. In Iron Transport in Animals, Plants, and Microorganism. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 370–386. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Muller G and Raymond K N 1984 Specificity and mechanism of ferioxamine-mediated iron transport in Streptomyces pilosus. J. Bacteriol. 160, 304–312.

    PubMed  CAS  Google Scholar 

  • Muller G, Matzanke B F and Raymond K N 1984 Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J. Bacteriol. 160, 313–318.

    PubMed  CAS  Google Scholar 

  • Muller G, Isowa Y and Raymond K N 1985 Stereospecificity of siderophore-mediated iron uptake in Rhodotorula pilmanae as probed by enantiorhodotorulic acid and isomers of chromic rhodotorulate. J. Biol. Chem. 260, 13921–13926.

    PubMed  CAS  Google Scholar 

  • Neilands J B and Leong S A 1986 Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37, 187–208.

    Article  CAS  Google Scholar 

  • Neilands J B, Konopka K, Schwyn B, Coy M, Francis R T, Paw B H and Bagg A 1987 Comparative biochemistry of microbial iron assimilation. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 3–34. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Nelson M N, Cooper C R, Crowley D E, Reid C P P and Szaniszlo P J 1988 An Escherichia coli bioassay of individual siderophores in soil. J. Plant Nutr. 11, 915–924.

    Article  CAS  Google Scholar 

  • Nomoto K, Sugiura Y and Takagi S 1987 Mugineic acids, studies on phytosiderophores In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 401–424. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Oida F, Ota N, Mino Y, Nomoto K and Sugiura Y 1989 Stereospecific iron uptake mediated by phytosiderophore in gramineous plants. J. Am. Chem. Soc. 111, 3436–3437.

    Article  CAS  Google Scholar 

  • Payne S M 1988 Iron and virulence in the family Enterobacteriaceae. CRC Crit. Rev. Microbiol. 16, 81–111.

    Article  CAS  Google Scholar 

  • Postle K and Skare J T 1988 Escherichia coli TonB protein is exported from the cytoplasm without proteolytic cleavage of its amino terminus. J. Biol. Chem. 263, 11000–11007.

    PubMed  CAS  Google Scholar 

  • Powell P E, Szaniszlo P J, Cline G R and Reid C P P 1982 Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5, 653–673.

    Article  CAS  Google Scholar 

  • Raymond K N, Muller G and Matzanke B F 1984 Complexation of iron by siderophores: A review of their solution and structural chemistry and biolgical function. Topics Curr. Chem. 123, 49–102.

    Article  CAS  Google Scholar 

  • Reid R K, Reid C P P, Powell P E and Szaniszlo P J 1984 Comparison of siderophore concentrations in aqueous extracts of rhizosphere and adjacent bulk soils. Pedobiologia 26, 263–266.

    Google Scholar 

  • Römheld V and Marschner H 1983 Mechanism of iron uptake by peanut plants. Plant Physiol. 71, 949–954.

    Article  PubMed  Google Scholar 

  • Römheld V and Marschner H 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180.

    Article  PubMed  Google Scholar 

  • Römheld V and Marschner H 1990 Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant and Soil 123, 147–153.

    Article  Google Scholar 

  • Römheld V 1987 Existence of two different strategies for the acquisition of iron in higher plants. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 353–374. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Scarborough G 1985 Binding energy, conformational change, and the mechanism of movement of transmembrane solute movements. Microbiol. Rev. 49, 214–231.

    PubMed  CAS  Google Scholar 

  • Sijmons P C, Van Den Briel W and Bienfait H F 1984 Cytosolic NADPH is the electron donor for extracellular FeIII reduction in iron deficient roots. Plant Physiol. 75, 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Smarelli J and Castignetti D 1986 Iron acquisition by plants: The reduction of ferrisiderophores by higher plant NADH: nitrated reductase. Biochim. Biophys. Acta 882, 337–342.

    Article  Google Scholar 

  • Takagi S, Kamei S and Yu M H 1988 Efficiency of iron extraction from soil by mugineic acid family phytosi-derophores. J. Plant Nutr. 11, 643–651.

    Article  CAS  Google Scholar 

  • Treeby M, Marschner H and Römheld V 1989 Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic chelators. Plant and Soil 114, 217–226.

    Article  CAS  Google Scholar 

  • Van der Helm D, Jalal M A F and Hossain M B 1987 The crystal structure, conformation, and configurations of siderophores. In Iron Transport in Animals, Plants, and Microorganisms. Eds. G Winkelmann, D Van der Helm and J B Neilands. pp 135–166. VCH Chemie, Weinheim, FRG.

    Google Scholar 

  • Walker C D and Welch R M 1986 Nicotianamine and related phytosiderophores: Their physiological significance and advantages for plant metabolism. J. Plant Nutr. 9, 523–534.

    Article  CAS  Google Scholar 

  • Winkelmann G and Braun V 1981 Stereoselective recognition of ferrichrome by fungi and bacteria. FEMS Microbiol. Lett. 11, 237–241.

    Article  CAS  Google Scholar 

  • Winkelmann G and Huschka H 1987 Molecular recognition and transport of siderophores in fungi. In Iron Transport in Animals, Plants and Microorganisms. Eds. G Winkelmann, D van der Helm and J B Neilands. pp. 317–336. VCH Chemie, Weinheim, FRG.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Crowley, D.E., Wang, Y.C., Reid, C.P.P., Szaniszlo, P.J. (1991). Mechanisms of iron acquisition from siderophores by microorganisms and plants. In: Chen, Y., Hadar, Y. (eds) Iron Nutrition and Interactions in Plants. Developments in Plant and Soil Sciences, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3294-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3294-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5455-3

  • Online ISBN: 978-94-011-3294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics