Magnetic Schrödinger operators and effective Hamiltonians

  • Johannes Sjöstrand
Part of the Mathematical Physics Studies book series (MPST, volume 12)


In this survey we discuss some recent progress in the semiclassical analysis for magnetic Schrödinger operators with periodic electric potentials and a constant magnetic field. Most of the material is based on joint works with B. Helffer and this part has been covered by the lecture notes [S1]. Some more recent work with C. Gérard and A. Martinez [GMS] is here surveyed for the first time.


Pseudodifferential Operator Selfadjoint Operator Constant Magnetic Field Wannier Function Complex Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AvSi]
    J.Avron, B.Simon, ‘Stability of gaps for periodic potentials under variation of a magnetic field’, J.Phys. A: Math.Gen. 18 (2) (1985), 2199–2205.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [Be]
    R.Beals, ‘Characterization of P.D.O. and applications’, Duke Math. J. 44 (1977), 45–57.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Bel1]
    J.Bellissard, ‘C*—Algebras in solid state physics’, 2D—Electrons in a uniform magnetic field. Proceedings of the Warwick conference on operator algebras (July 1957).Google Scholar
  4. [Bel2]
    J.Bellissard, ‘Almost periodicity in solid state physics and C* algebras’, Proceedings of the H.Bohr centennary conf. On almost periodic functions (April 1987).Google Scholar
  5. [B]
    V.Buslaev, ‘Semiclassical approximation for equations with periodic coefficients’, Uspeki Mat. Nauk 42(6)(1987),77–98MathSciNetGoogle Scholar
  6. V.Buslaev, ‘Semiclassical approximation for equations with periodic coefficients’, Russ. Math. Surv. 42 (6) (1987), 97–125.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [GMS]
    C.Gérard, A.Martinez, J.Sjöstrand, ‘A mathematical approach to the effective Hamiltonian in perturbed periodic problems’, Prépublication Univ. de Paris Sud 1990.Google Scholar
  8. [GuRT]
    J.C.Guillot, J.Ralston, E.Trubowitz, ‘Semi—classical methods in solid state physics’, Comm. in Math. Phys. 116 (1988), 401–415.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [Ha]
    E.M.Harrell,‘The band structure of a one—dimensional periodic system in a scaling limit’, Ann. Physics 119 (1979), 351–369.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [HS1]
    B.Helffer,J.Sjöstrand, ‘On diamagnetism and de Haas—van Alphen effect’, Ann. de l’IHP, physique théorique, 52 (3) (1990).Google Scholar
  11. [HS2]
    B.Helffer,J.Sjöstrand, ‘Equation de Schrödinger avec champ magnétique et équation de Harper’, Springer LN in phys. 345(1989).Google Scholar
  12. [HS3]
    HS3] B.Helffer,J.Sjöstrand, ‘Analyse semiclassique pour l’équation de Harper’, Bull. de la S.M.F.116(4)(1988), Mémoire n0 34.Google Scholar
  13. [HS4]
    B.Helffer,J.Sjöstrand, ‘Analyse semiclassique pour l’équation de Harper II. Comportement semi—classique près d’un rationnel’, Bull. de la S.M.F., Mémoire, to appear.Google Scholar
  14. [HS5]
    B.Helffer,J.Sjöstrand, ‘Semi classical analysis for Harper’s equation III. Cantor structure of the spectrum’, Bull. de la S.M.F., Mémoire, to appear.Google Scholar
  15. [Hö]
    L.Hörmander, ‘The analysis of linear partial differential operators I—IV’, Grundlehren, Springer 1983–85.Google Scholar
  16. [Ne1]
    G.Nenciu, ‘Stability of energy gaps under variation of the magnetic field’, Letters in Math. Ph. 11 (1986), 127–132.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [Ne2]
    G.Nenciu, ‘Bloch electrons in a magnetic field: Rigourous justification of the Peierls—Onsager effective Hamiltonian’, Letters in Math. Ph. 17 (1989), 247–252.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [O]
    L.Onsager, ‘Interpretation of the de Haas—van Alphen effect’, Phil.Mag., 43 (1952), 1006–1008.Google Scholar
  19. [Ou]
    A.Outassourt, ‘Comportement semi—classique pour l’opérateur de Schrödinger â potentiel périodique’, J.Funct. Anal. 72 (1987), 65–93.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [P]
    R.Peierls, ‘Zur theorie des diamagnetismus von Leitungselectronen’, Z. für Physik 80 (1933), 763–791.ADSCrossRefGoogle Scholar
  21. [ReSi]
    M.Reed, B.Simon, ‘Methods of modern mathematical physics, I—IV’, Academic Press, 1974–1979.Google Scholar
  22. [Sh]
    M.Shubin, ‘The spectral theory and the index of elliptic operators with almost periodic coefficients’, Usp.Mat.Nauk 34(2)(1979), 95–135MathSciNetzbMATHGoogle Scholar
  23. M.Shubin, ‘The spectral theory and the index of elliptic operators with almost periodic coefficients’, Russian Math. Surv., 34 (2) (1979), 109–157.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [Si]
    B.Simon, ‘Semiclassical analysis of low lying eigenvalues III.Width of the ground state band in strongly coupled solids’, Ann. Physics 158 (1984), 415–420.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [S1]
    J.Sjöstrand, ‘Microlocal analysis for the periodic magnetic Schrödinger equation and related questions’, Lecture notes CIME, Montecatini July 1989, Springer LN Math. to appear.Google Scholar
  26. [Z]
    J.Zak, ‘Magnetic translation group’, Physical Review, 134 (6A), June 1964.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Johannes Sjöstrand
    • 1
    • 2
  1. 1.Dépt. de MathématiquesUniversité de Paris SudOrsayFrance
  2. 2.URA 760CNRSFrance

Personalised recommendations