Recent Developments in Quantum Mechanics pp 113-131 | Cite as
Quantum Tunnelling for Bloch Electrons in Small Electric Fields
Chapter
- 150 Downloads
Abstract
We consider the quantum Hamiltonian describing a one dimensional particle in a periodic potential plus constant electric field and show that it exhibits an infinite ladder of resonances in the semi-classical regime. The lifetime of these resonances is related to tunnelling phenomena. This provides in this particular case a positive answer to the question of the existence of Stark Ladders.
Preview
Unable to display preview. Download preview PDF.
References
- [AC]Aguilar J., Combes J.M.: A class of analytic perturbations for one body Schrödinger Operators. Corn. Math. Phys. 22, 269–279 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Ag]Agmon S. Lectures on exponential decay of second order elliptic Equation. Princeton Math. Notes. 29 (1982)Google Scholar
- [AF]Agler J., Froese R.: Existence of Stark ladder resonances. Corn. Math. Phys. 100, 161–171 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Av]Avron J.: The lifetime of Wannier Ladder States. Ann. Phys. 143, 33–53 (1982)ADSCrossRefGoogle Scholar
- [B]Bentosela F.: This volume.Google Scholar
- [BVD]Bleuse J., Bastard G., Voisin P. Phys. Rev. Letters 60, 220 (1988)ADSCrossRefGoogle Scholar
- [BCD1]Briet Ph., Combes J.M., Duclos P.: On the location of resonances for Schrödinger Operators.Google Scholar
- I.Resonance free domains. J. Math. Anal. Appl. 126, 90–99 (1987)MathSciNetCrossRefGoogle Scholar
- II.Barrier top resonances. Com. in P.D.E. 12, 201–222 (1987)CrossRefGoogle Scholar
- III.Shape resonances. To appearGoogle Scholar
- [BCD2]Briet Ph., Combes J.M., Duclos P.: Spectral Stability under tunnelling. Com. Math. Phys. 126, 133–156 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [BD]Buslaev V.S.: Dimitrieva L.A. This volumeGoogle Scholar
- [CDKS]Combes J.M., Duclos P., Klein M., Seiler R.: The shape resonance. Com. Math. Phys. 110, 215–236 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [CH]Combes J.M., Hislop P. Stark ladder resonances for small electric fields. Preprint, Univ. Kentucky (1989)Google Scholar
- [DeBHi]De Bièvre S., Hislop P.:Spectral resonances for the Laplace-Beltrami operator. Ann. Inst. H. Poincaré 48, 105–145 (1988)zbMATHGoogle Scholar
- [HH]Herbst I.W., Howland J.S.: The Stark ladder and other one dimensional external field problems. Com. Math. Phys. 80, 23–40 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [HS1]Hellfer B. Sjostrand J.: Resonances en limite semi-clanique. Supplem Bulletin SMF 114 (1986)Google Scholar
- [HS2]Hellfer B., Sjostrand J. Multiple wells in the semi-classical limit I. Corn. in P.D.E. 9, 337–408 (1984)CrossRefGoogle Scholar
- [HiSi]Hislop P., Sigal I.M.: Semi-classical theory of shape resonances in quantum mechanics, Memoirs. Am. Math. Soc. 399 (1989)Google Scholar
- [Hu]Hunziker W.: Distortion analyticity and molecular resonance curves. Ann. Inst. M. Poincaré, 45, 339–358 (1986)MathSciNetzbMATHGoogle Scholar
- [J]Jensen A. Asymptotic completeness for a new class of Stark effect Hamiltonians. 107, 21–28 (1986)zbMATHGoogle Scholar
- [NA]Nakamura S.: A note on the absence of resonances for Schrödinger Operators. Lett. Math. Phys. 16, 217–223 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [N]Nenciu G. This volumeGoogle Scholar
- [JMS]Jona-Lasinio, Martinelli F., Scoppola E. New approach to the semi-classical limit of quantum mechanics I. Corn. Math. Phys. 80, 223 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Kl]Klein M.: On the absence of resonances for Schrödinger Operators in the semiclassical limit. Corn. Math. Phys. 106, 485–494 (1985)ADSCrossRefGoogle Scholar
- [RS]Reed M., Simon B.: Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic, N.Y, 1978 )zbMATHGoogle Scholar
- [Si1]Sigal I.M.: Sharp exponential bounds on resonance states and width of resonances. Adv. Appl. Math. 9, 127–166 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- [Si2]Sigal I.M.: Geometric Theory of Stark resonances in multielectron systems. Corn. Math. Phys. 119, 287–314 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Si3]Sigal I.M.: Geometric methods in the quantum many body problems. Corn. Math. Phys. 85, 309–324 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Sim]Simon B.: Semi-classical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré 38, 295–307 (1983)zbMATHGoogle Scholar
- [Z]Zak J.: Stark ladders in solids ? Phys. Rev. Lett. 20, 1477–1481 (1968)ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1991