Dirac Particles in Magnetic Fields

  • B. Thaller
Part of the Mathematical Physics Studies book series (MPST, volume 12)


We give a review of spectral and scattering theory for spin-1/2 particles in an external magnetic field. The supersymmetric point of view is strongly emphasized. Recent results on Foldy-Wouthuysen transformations, properties of the resolvent, threshold eigenvalues and scattering theory are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berthier, A. and Georgescu, V. On the point spectrum for Dirac operators. J. Func. Anal. 71: 309–338 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Helfer, B., Nourrigat, J. and Wang, X. P. Sur le spectre de l’equation de Dirac avec champ magnetique. Preprint. (1989).Google Scholar
  3. [3]
    Hunziker, W. On the nonrelativistic limit of the Dirac theory. Commun. Math. Phys. 40: 215–222 (1975).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Gesztesy, F., Grosse, H. and Thaller, B. A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles. Ann. Inst. H. Poincaré. 40: 159–174 (1984).MathSciNetzbMATHGoogle Scholar
  5. [5]
    Grigore, D. R., Nenciu, G. and Purice, R. On the nonrelativistic limit of the Dirac Hamiltonian. Preprint, to appear in Ann. Inst. H. Poincaré. (1989).Google Scholar
  6. [6]
    Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B. Schrödinger operators with applications to quantum mechanics and global geometry. Springer Verlag. Berlin, Heidelberg, New York, London, Paris, Tokyo 1987.Google Scholar
  7. [7]
    Leinfelder, H. Gauge invariance of Schrödinger operators and related spectral properties. J. Op. Theory. 9: 163–179 (1983).MathSciNetzbMATHGoogle Scholar
  8. [8]
    Griimm, H. R. Quantum mechanics in a magnetic field. Acta Phys. Austriaca. 53: 113–131, (1981).MathSciNetGoogle Scholar
  9. [9]
    Thaller, B. Normal forms of an abstract Dirac operator and applications to scattering theory. J. Math. Phys. 29: 249–257 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    Aharonov, Y. and Casher, A. Ground state of a spin-1/2 charged particle in a two dimensional magnetic field. Phys. Rev. A19: 2461–2462 (1979).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Avron, J. E. and Seiler, R. Paramagnetism for nonrelativistic electrons and euclidean massless Dirac particles. Phys. Rev. Lett. 42: 931–934 (1979).ADSCrossRefGoogle Scholar
  12. [12]
    Loss, M. and Yau, H. T. Stability of Coulomb systems with magnetic fields III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104: 283–290 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    Miller, K. C. Bound states of quantum mechanical particles in magnetic fields. Dissertation, Princeton University. (1982).Google Scholar
  14. [14]
    Miller, K. and Simon, B. Quantum magnetic Hamiltonians with remarkable spectral properties. Phys. Rev. Lett. 44: 1706–1707 (1980).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Helffer, B. and Mohamed, A. Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec champ magnetique. Ann. Inst. Fourier 38: 95–112 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Kalf, H. Non-existence of eigenvalues of Dirac operators. Proc. Roy. Soc. Edinburgh. A89: 307–317 (1981).MathSciNetGoogle Scholar
  17. [17]
    Thaller, B. Scattering theory of a supersymmetric Dirac operator. Preprint. (1989).Google Scholar
  18. [18]
    Loss, M. and Thaller, B. Short-range scattering in long-range magnetic fields: The relativistic case. J. Diff. Eq. 73: 225–236 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Dollard, J. and Velo, G. Asymptotic behaviour of a Dirac particle in a Coulomb field. Il Nuovo Cimento. 45: 801–812 (1966).CrossRefGoogle Scholar
  20. [20]
    Thaller, B. Relativistic scattering theory for long-range potentials of the nonelectrostatic type. Lett. Math. Phys. 12: 15–19 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    Perry, P. Scattering Theory by the Enss Method. Math. Rep. 1, Harwood academic publishers, New York 1983zbMATHGoogle Scholar
  22. [22]
    Loss, M. and Thaller, B. Scattering of particles by long-range magnetic fields. Ann. Phys. 176: 159–180 (1987).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • B. Thaller
    • 1
  1. 1.Institute of MathematicsGrazAustria

Personalised recommendations